Definition Pred : term := .\"n"; "n" !Zero (.\"n"; "n").
Hint Unfold Pred : cbv.
Lemma Pred_correct n : Pred (enc n) ≡ enc (pred n).
Proof.
destruct n; solveeq.
Qed.
Definition Mul := rho (.\ "Mul", "m", "n"; "m" !Zero (.\ "m"; !Add "n" ("Mul" "m" "n"))).
Lemma Mul_correct m n :
Mul (enc n) (enc m) ≡ enc (n * m).
Proof.
induction n.
- solveeq.
- transitivity (Add (enc m) (Mul (enc n) (enc m))). solveeq.
now rewrite IHn, Add_correct.
Qed.
From Undecidability.L Require Import DecidableRecognisable Enumerable.
Lemma decidable_ext p q : (forall x, p x <-> q x) -> decidable p -> decidable q.
Proof.
intros H [u Hu].
exists u. intuition. intros ?. now rewrite <- H.
Qed.
Definition finite p := exists l : list term, forall x, p x <-> x el l.
Lemma decidable_finite p : finite p -> decidable p.
Proof.
intros (l & Hl).
revert p Hl. induction l; intros p Hl.
- eapply decidable_ext with (p := (fun x => False)). intros. rewrite Hl. intuition.
exists (lambda (F)). split; value. intros. right. intuition. solveeq.
- cbn in Hl.
destruct (IHl (fun x => x el l)) as (u & proc_u & Hu). reflexivity.
exists (lambda ((Eq 0 (tenc a)) T (u 0))). split; value.
intros s.
assert ((lambda (((Eq 0) (tenc a)) T (u 0))) (tenc s) ≡
((benc (term_eq_bool s a)) T (u (tenc s)))).
assert (H := Eq_correct' s a). solveeq.
rewrite H. clear H. unfold term_eq_bool.
decide (s = a).
+ destruct (Hu a) as [ [] | [] ]; left; ( split; [ firstorder | subst; solveeq]).
+ destruct (Hu s) as [ [] | [] ]; [ left | right ] ; ( split ; [firstorder | solveeq] ).
Qed.
Lemma decidable_empty : decidable (fun x => False).
Proof.
eapply decidable_finite. exists []. tauto.
Qed.
Lemma decidable_full : decidable (fun x => True).
Proof.
now eapply decidable_ext; [ | eapply decidable_complement, decidable_empty ].
Qed.
Theorem FirstFixedPoint (s : term) : closed s -> exists t, closed t /\ s t ≡ t.
Proof.
pose (A := .\ "x"; !s ("x" "x")).
pose (t := A A).
exists t. split;[subst t A;value|].
symmetry. cbv. solvered.
Qed.
Goal exists t, closed t /\ t ≡ (tenc t).
Proof.
destruct (SecondFixedPoint) with ( s := I) as [t [cls_t A]]. value.
exists t.
split; value. symmetry in A. eapply (eqTrans A). solvered.
Qed.
Require Import Rice.
Goal forall t, ~ recognisable (fun s => ~ pi s t).
Proof.
intros t. eapply Rice_pi.
- hnf; intuition. eapply H1. intros. rewrite H2. eauto.
- exists (lambda I). repeat split; value. intros H; eapply H. exists I. solveeq.
- intros A. eapply (D_pi t); eauto.
Qed.
Goal ~ recognisable (fun s => exists t, ~ pi s t).
Proof.
eapply Rice_pi.
- hnf; intuition. destruct H1 as [u H1].
exists u. now rewrite <- H2.
- exists (lambda I). split; value. intros [? H]. eapply H. eexists; eapply evaluates_equiv; split;[|eexists;reflexivity]. solvered.
- exists I. now rewrite D_pi.
Qed.
Lines of code for major results
- Definition of L: 400 lines
- Rice's Theorem, including properties of decidable/recognisable classes: 900 lines
- Step-indexed interpreter: 900 lines
- Totality: 1200 lines
- Parallel or, including Post's theorem and closure of recognisable classes under union: 120
- Equivalence of enumerability and recognisability: 1500
- Markov: 1650