Definition H (s t : term) : term := Eval cbv in (.\ "z"; !E "z" !s !(lambda T) (!E "z" !t !(lambda T) !F)).
Definition O : term := Eval cbv in .\ "x", "y";
(.\ "z"; !E "z" "x" !(lambda T) (!E "z" "y" !(lambda F) !I)) (!C !(H 2 1)).
Lemma H_proc s t : proc (H (tenc s) (tenc t)).
Proof.
value.
Qed.
Lemma H_rec s t n : (H (tenc s) (tenc t) (enc n) ≡ E (enc n) (tenc s) (lambda T) (E (enc n) (tenc t) (lambda T) F)).
Proof.
solveeq.
Qed.
Lemma H_test s t : test (H (tenc s) (tenc t)).
Proof.
intros n. destruct (eval n s) eqn:Eq, (eval n t) eqn:Eq2; rewrite H_rec, !E_correct, Eq, Eq2;
[ left .. | right]; solveeq.
Qed.
Lemma H_inv n s t : satis ( H (tenc s) (tenc t) ) n <-> eval n s <> None \/ eval n t <> None.
Proof.
split.
- intros.
destruct (eval n s) eqn:Eq, (eval n t) eqn:Eq2; try firstorder congruence.
exfalso. unfold satis in H0.
rewrite H_rec, !E_correct, Eq, Eq2 in H0.
setoid_rewrite none_correct at 2 in H0; value. rewrite none_correct in H0; value. inv H0.
- intros. destruct (eval n s) eqn:Eq, (eval n t) eqn:Eq2; (try firstorder congruence); unfold satis; rewrite H_rec, !E_correct, Eq, Eq2; solveeq.
Qed.
Lemma O_rec s t : O (tenc s) (tenc t) ≡ (lambda (E 0 (tenc s) (lambda T) (E 0 (tenc t) (lambda F) I))) (C (H (tenc s) (tenc t))).
Proof.
solvered.
Qed.
Lemma O_complete s t : eva s \/ eva t -> eva (O (tenc s) (tenc t)).
Proof.
intros [ [v [n Hv] % evaluates_eval] | [v [n Hv] % evaluates_eval] ];
rewrite O_rec; edestruct (C_complete (n := n) (H_proc s t) (H_test s t)) as [k []]; unfold satis.
- rewrite H_rec, !E_correct, Hv.
destruct (eval n t) eqn:E2; solvered.
- rewrite H0. eapply H_inv in H1.
destruct (eval k s) eqn:E1; try firstorder congruence.
+ exists T. eapply evaluates_equiv; split; value.
transitivity (E (enc k) (tenc s) (lambda T) (E (enc k) (tenc t) (lambda F) I)). solveeq.
rewrite !E_correct, E1. destruct (eval k t); solveeq.
+ destruct (eval k t) eqn:E2; try firstorder congruence.
exists F. eapply evaluates_equiv; split; value.
transitivity (E (enc k) (tenc s) (lambda T) (E (enc k) (tenc t) (lambda F) I)). solveeq.
rewrite !E_correct, E1, E2. solveeq.
- rewrite H_rec, !E_correct, Hv.
destruct (eval n s) eqn:E2; solvered.
- rewrite H0. eapply H_inv in H1.
destruct (eval k s) eqn:E1; try firstorder congruence.
+ exists T. eapply evaluates_equiv; split; value.
transitivity (E (enc k) (tenc s) (lambda T) (E (enc k) (tenc t) (lambda F) I)). solveeq.
rewrite !E_correct, E1. destruct (eval k t); solveeq.
+ destruct (eval k t) eqn:E2; try firstorder congruence.
exists F. eapply evaluates_equiv; split; value.
transitivity (E (enc k) (tenc s) (lambda T) (E (enc k) (tenc t) (lambda F) I)). solveeq.
rewrite !E_correct, E1, E2. solveeq.
Qed.
Lemma O_sound s t : eva (O (tenc s) (tenc t)) -> eva s /\ O (tenc s) (tenc t) ▷ T \/ eva t /\ O (tenc s) (tenc t) ▷ F.
Proof with eauto.
rewrite O_rec. intros H0.
assert (eva (C (H (tenc s) (tenc t)))) by now eapply app_eva in H0.
eapply C_sound in H1 as [n H1 % H_inv]; value; eauto using H_test.
assert (H2 := H1). eapply H_inv in H1.
eapply C_complete in H1 as (k & H1 & sat); value; eauto using H_test.
eapply H_inv in sat. destruct (eval k s) eqn:Eq; try congruence.
- left. split. exists t0. eapply eval_evaluates. eauto.
rewrite H1. eapply evaluates_equiv; split; value.
transitivity (E (enc k) (tenc s) (lambda T) (E (enc k) (tenc t) (lambda F) I)). solveeq.
rewrite !E_correct, Eq. destruct (eval k t); solveeq.
- destruct sat; try congruence.
destruct (eval k t) eqn:E2; try congruence. right.
split. exists t0. eapply eval_evaluates. eauto.
rewrite H1. eapply evaluates_equiv; split; value.
transitivity (E (enc k) (tenc s) (lambda T) (E (enc k) (tenc t) (lambda F) I)). solveeq.
rewrite !E_correct, Eq. destruct (eval k t); solveeq.
Qed.
From Undecidability.L Require Import DecidableRecognisable.
Theorem Post p : (forall x, p x \/ ~ p x) -> recognisable p -> recognisable (complement p) -> decidable p.
Proof.
intros pdec_p [u [[cls_u lam_u] Hu]] [v [[cls_v lam_v] Hv]].
pose (por_u_v := lambda (O ((App (tenc u) (Q 0))) ((App (tenc v) (Q 0))))).
exists por_u_v.
split; value. intros t.
unfold complement,pi in *.
assert (A : eva (O (tenc (u (tenc t))) (tenc (v (tenc t))))). {
eapply O_complete. now rewrite <-Hu,<-Hv.
}
destruct (O_sound A) as [[B [? C]%evaluates_equiv] | [B [? C]%evaluates_equiv]].
- left; split. now apply Hu.
eapply evaluates_equiv; split; value.
transitivity (((O ((App (tenc u) ( Q (tenc t))))) ((App (tenc v) (Q (tenc t)))))). unfold por_u_v. solveeq.
now rewrite !Q_correct, !App_correct.
- right; split. now apply Hv. eapply evaluates_equiv; split; value.
transitivity (((O ((App (tenc u) ( Q (tenc t))))) ((App (tenc v) (Q (tenc t)))))). unfold por_u_v; solveeq.
now rewrite !Q_correct, !App_correct.
Qed.
Lemma recognisable_union p q : recognisable p -> recognisable q -> recognisable (union p q).
Proof.
intros [u [[lam_u cls_u] Hu]] [v [[lam_v cls_v] Hv]].
unfold recognisable, union.
exists (lambda (O ((App (tenc u) (Q 0))) ((App (tenc v) (Q 0))))).
split; value. intros t.
rewrite Hu, Hv; unfold pi.
assert (H : (lambda (O ((App (tenc u)) (Q 0)) ((App (tenc v)) (Q 0)))) (tenc t) ≡ O (tenc (u (tenc t))) (tenc (v (tenc t)))). {
transitivity (((O ((App (tenc u) ( Q (tenc t))))) ((App (tenc v) (Q (tenc t)))))). solveeq.
now rewrite Q_correct, App_correct, App_correct.
}
rewrite H; split.
- intros [A | A]; eapply O_complete; intuition.
- intros A. eapply O_sound in A; intuition.
Qed.