(**************************************************************)
(* Copyright Dominique Larchey-Wendling * *)
(* *)
(* * Affiliation LORIA -- CNRS *)
(**************************************************************)
(* This file is distributed under the terms of the *)
(* CeCILL v2 FREE SOFTWARE LICENSE AGREEMENT *)
(**************************************************************)
Require Import List Arith Nat Lia.
Set Implicit Arguments.
Section interval.
(* Copyright Dominique Larchey-Wendling * *)
(* *)
(* * Affiliation LORIA -- CNRS *)
(**************************************************************)
(* This file is distributed under the terms of the *)
(* CeCILL v2 FREE SOFTWARE LICENSE AGREEMENT *)
(**************************************************************)
Require Import List Arith Nat Lia.
Set Implicit Arguments.
Section interval.
A small interval & valuation library
Definition interval := (nat * nat)%type. (* (a,b) <~~~> a,b[ *)
Implicit Types (i j : interval).
Definition in_interval i x := let (a,b) := i in a <= x < b.
Definition out_interval i x := let (a,b) := i in x < a \/ b <= x.
Definition interval_disjoint i j := forall x, in_interval i x -> in_interval j x -> False.
Definition interval_union (i j : interval) :=
match i, j with (a1,b1),(a2,b2) => (min a1 a2, max b1 b2) end.
Fact in_out_interval i x : in_interval i x -> out_interval i x -> False.
Proof. destruct i; simpl; lia. Qed.
Fact in_out_interval_dec i x : { in_interval i x } + { out_interval i x }.
Proof.
destruct i as (a,b); simpl.
destruct (le_lt_dec a x); destruct (le_lt_dec b x); try (left; lia);right; lia.
Qed.
Fact interval_union_left i j x : in_interval i x -> in_interval (interval_union i j) x.
Proof.
revert i j; intros (a,b) (u,v); simpl.
generalize (Nat.le_min_l a u) (Nat.le_max_l b v); lia.
Qed.
Fact interval_union_right i j x : in_interval j x -> in_interval (interval_union i j) x.
Proof.
revert i j; intros (a,b) (u,v); simpl.
generalize (Nat.le_min_r a u) (Nat.le_max_r b v); lia.
Qed.
Definition valuation_union i1 (g1 : nat -> nat) i2 g2 :
interval_disjoint i1 i2
-> { g | (forall x, in_interval i1 x -> g x = g1 x)
/\ (forall x, in_interval i2 x -> g x = g2 x) }.
Proof.
intros H2.
exists (fun x => if in_out_interval_dec i1 x then g1 x else g2 x).
split; intros x Hx.
+ destruct (in_out_interval_dec i1 x) as [ | H3 ]; auto.
exfalso; revert Hx H3; apply in_out_interval.
+ destruct (in_out_interval_dec i1 x) as [ H3 | ]; auto.
exfalso; revert H3 Hx; apply H2.
Qed.
Definition valuation_one_union k v i1 (g1 : nat -> nat) i2 g2 :
~ in_interval (interval_union i1 i2) k
-> interval_disjoint i1 i2
-> { g | g k = v /\ (forall x, in_interval i1 x -> g x = g1 x)
/\ (forall x, in_interval i2 x -> g x = g2 x) }.
Proof.
intros H1 H2.
exists (fun x => if eq_nat_dec x k then v
else if in_out_interval_dec i1 x then g1 x
else g2 x).
split; [ | split ].
+ destruct (eq_nat_dec k k) as [ | [] ]; auto.
+ intros x Hx.
destruct (eq_nat_dec x k) as [ | ].
* subst; destruct H1; apply interval_union_left; auto.
* destruct (in_out_interval_dec i1 x) as [ | H3 ]; auto.
exfalso; revert Hx H3; apply in_out_interval.
+ intros x Hx.
destruct (eq_nat_dec x k) as [ | ].
* subst; destruct H1; apply interval_union_right; auto.
* destruct (in_out_interval_dec i1 x) as [ H3 | ]; auto.
exfalso; revert H3 Hx; apply H2.
Qed.
End interval.