(**************************************************************)
(* Copyright Dominique Larchey-Wendling * *)
(* Ralph Matthes + *)
(* *)
(* * Affiliation LORIA -- CNRS *)
(* + Affiliation IRIT -- CNRS *)
(**************************************************************)
(* This file is distributed under the terms of the *)
(* CeCILL v2 FREE SOFTWARE LICENSE AGREEMENT *)
(**************************************************************)
(* Copyright Dominique Larchey-Wendling * *)
(* Ralph Matthes + *)
(* *)
(* * Affiliation LORIA -- CNRS *)
(* + Affiliation IRIT -- CNRS *)
(**************************************************************)
(* This file is distributed under the terms of the *)
(* CeCILL v2 FREE SOFTWARE LICENSE AGREEMENT *)
(**************************************************************)
Require Import Arith Omega List Permutation.
Require Import utils_tac utils_list.
Set Implicit Arguments.
Local Infix "~p" := (@Permutation _) (at level 70, no associativity).
Section incl.
Variable X : Type.
Implicit Type l : list X.
Fact incl_cons_linv l m x : incl (x::m) l -> In x l /\ incl m l.
Proof.
intros H; split.
+ apply H; left; auto.
+ intros ? ?; apply H; right; auto.
Qed.
Fact incl_app_rinv l m p : incl m (l++p) -> exists m1 m2, m ~p m1++m2 /\ incl m1 l /\ incl m2 p.
Proof.
induction m as [ | x m IHm ].
+ exists nil, nil; simpl; repeat split; auto; intros ? [].
+ intros H.
apply incl_cons_linv in H.
destruct H as (H1 & H2).
destruct (IHm H2) as (m1 & m2 & H3 & H4 & H5).
apply in_app_or in H1; destruct H1.
* exists (x::m1), m2; repeat split; auto.
- constructor 2; auto.
- intros ? [|]; subst; auto.
* exists m1, (x::m2); repeat split; auto.
- apply Permutation_cons_app; auto.
- intros ? [|]; subst; auto.
Qed.
Fact incl_cons_rinv x l m : incl m (x::l) -> exists m1 m2, m ~p m1 ++ m2 /\ Forall (eq x) m1 /\ incl m2 l.
Proof.
intros H.
apply (@incl_app_rinv (x::nil) _ l) in H.
destruct H as (m1 & m2 & H1 & H2 & H3).
exists m1, m2; repeat split; auto.
rewrite Forall_forall.
intros a Ha; apply H2 in Ha; destruct Ha as [ | [] ]; auto.
Qed.
Fact incl_right_cons_choose x l m : incl m (x::l) -> In x m \/ incl m l.
Proof.
intros H.
apply incl_cons_rinv in H.
destruct H as ( m1 & m2 & H1 & H2 & H3 ); simpl in H1.
destruct m1 as [ | y m1 ].
+ right.
intros u H; apply H3; revert H.
apply Permutation_in; auto.
+ left.
apply Permutation_in with (1 := Permutation_sym H1).
rewrite Forall_forall in H2.
rewrite (H2 y); left; auto.
Qed.
Fact incl_left_right_cons x l y m : incl (x::l) (y::m) -> y = x /\ In y l
\/ y = x /\ incl l m
\/ In x m /\ incl l (y::m).
Proof.
intros H; apply incl_cons_linv in H.
destruct H as [ [|] H2 ]; auto.
apply incl_right_cons_choose in H2; tauto.
Qed.
Fact perm_incl_left m1 m2 l: m1 ~p m2 -> incl m2 l -> incl m1 l.
Proof. intros H1 H2 ? H. apply H2; revert H; apply Permutation_in; auto. Qed.
Fact perm_incl_right m l1 l2: l1 ~p l2 -> incl m l1 -> incl m l2.
Proof.
intros H1 H2 ? ?; apply Permutation_in with (1 := H1), H2; auto.
Qed.
End incl.
Section Permutation_tools.
Variable X : Type.
Implicit Types (l : list X).
Theorem Permutation_In_inv l1 l2: l1 ~p l2 -> forall x, In x l1 -> exists l, exists r, l2 = l++x::r.
Proof. intros H ? ?; apply in_split, Permutation_in with (1 := H); auto. Qed.
Fact perm_in_head x l : In x l -> exists m, l ~p x::m.
Proof.
induction l as [ | y l IHl ].
+ destruct 1.
+ intros [ ? | H ]; subst.
* exists l; apply Permutation_refl.
* destruct (IHl H) as (m & Hm).
exists (y::m).
apply Permutation_trans with (2 := perm_swap _ _ _).
constructor 2; auto.
Qed.
End Permutation_tools.
Section pigeon_list.
Variable (X : Type).
Implicit Types (l m : list X).
Inductive list_has_dup : list X -> Prop :=
| in_list_hd0 : forall l x, In x l -> list_has_dup (x::l)
| in_list_hd1 : forall l x, list_has_dup l -> list_has_dup (x::l).
Fact list_hd_cons_inv x l : list_has_dup (x::l) -> In x l \/ list_has_dup l.
Proof. inversion 1; subst; auto. Qed.
Fact list_has_dup_app_left l m : list_has_dup m -> list_has_dup (l++m).
Proof. induction l; simpl; auto; constructor 2; auto. Qed.
Fact list_has_dup_app_right l m : list_has_dup l -> list_has_dup (l++m).
Proof.
induction 1; simpl.
+ constructor 1; apply in_or_app; left; auto.
+ constructor 2; auto.
Qed.
Fact perm_list_has_dup l m : l ~p m -> list_has_dup l -> list_has_dup m.
Proof.
induction 1 as [ | x l m H1 IH1 | x y l | ]; auto;
intros H; apply list_hd_cons_inv in H.
+ destruct H as [ H | H ].
* apply Permutation_in with (1 := H1) in H.
apply in_list_hd0; auto.
* apply in_list_hd1; auto.
+ destruct H as [ [ H | H ] | H ]; subst.
* apply in_list_hd0; left; auto.
* apply in_list_hd1, in_list_hd0; auto.
* apply list_hd_cons_inv in H.
destruct H as [ H | H ].
- apply in_list_hd0; right; auto.
- do 2 apply in_list_hd1; auto.
Qed.
Fact list_has_dup_app_inv l m : list_has_dup (l++m) -> list_has_dup l
\/ list_has_dup m
\/ exists x, In x l /\ In x m.
Proof.
induction l as [ | x l IHl ]; simpl; intros H; auto.
apply list_hd_cons_inv in H.
+ destruct H as [ H | H ].
* apply in_app_or in H; destruct H as [ H | H ].
- left; constructor; auto.
- do 2 right; exists x; simpl; auto.
* destruct (IHl H) as [ H1 | [ H1 | (y & H1 & H2) ] ]; auto.
- left; constructor 2; auto.
- do 2 right; exists y; simpl; auto.
Qed.
Fact list_has_dup_eq_duplicates m: list_has_dup m <-> exists x aa bb cc, m = aa++x::bb++x::cc.
Proof.
split.
+ induction 1 as [ m x Hm | m x _ IHm ].
- apply in_split in Hm.
destruct Hm as (bb & cc & Hm).
exists x, nil, bb, cc; subst; auto.
- destruct IHm as (y & aa & bb & cc & IHm).
exists y, (x::aa), bb, cc; subst; auto.
+ intros (x & aa & bb & cc & Hm).
subst m.
apply list_has_dup_app_left.
constructor 1; apply in_or_app; right.
constructor 1; reflexivity.
Qed.
Fact repeat_choice_two x m : Forall (eq x) m -> (exists m', m = x::x::m') \/ m = nil \/ m = x::nil.
Proof.
intros H.
destruct m as [ | a [ | b m ] ]; auto.
+ inversion H; subst; auto.
+ rewrite Forall_forall in H.
rewrite <- (H a), <- (H b); simpl; auto; left; exists m; auto.
Qed.
(* If m in included in x::l then
a) either m is included in l
b) or m has a duplicate (x but that does not matter here)
c) or m is permutable with x::m' with m' included in l
*)
Fact incl_right_cons_incl_or_lhd_or_perm m x l :
incl m (x::l) -> incl m l
\/ list_has_dup m
\/ exists m', m ~p x::m' /\ incl m' l.
Proof.
intros H.
apply incl_cons_rinv in H.
destruct H as (m1 & m2 & H1 & H2 & H3).
destruct (repeat_choice_two H2) as [ (?&?) | [|] ];
subst m1; simpl in H1; clear H2.
+ right; left; apply perm_list_has_dup with (1 := Permutation_sym H1), in_list_hd0; left; auto.
+ left; revert H1 H3; apply perm_incl_left.
+ firstorder.
Qed.
Fact incl_left_right_php x l y m : incl (y::m) (x::l) -> list_has_dup (y::m)
\/ x = y /\ incl m l
\/ In y l /\ incl m l
\/ In y l /\ exists m', m ~p x::m' /\ incl m' l.
Proof.
intros H; apply incl_left_right_cons in H.
destruct H as [ (? & ?) | [ (? & ?) | (H1 & H2) ] ]; subst; auto.
+ left; apply in_list_hd0; auto.
+ apply incl_right_cons_incl_or_lhd_or_perm in H2; firstorder.
left; apply in_list_hd1; auto.
Qed.
length_le_and_incl_implies_dup_or_perm is a generalisation of the PHP
for which the inductive case works w/o needing decidable equality
But I know, I should find a better name for it ...
If m is longer than l
and m is (set) included in l
then either it has a duplicate
or it is permutable with l
The proof is by measure induction on length l
Lemma length_le_and_incl_implies_dup_or_perm l m :
length l <= length m
-> incl m l
-> list_has_dup m \/ m ~p l.
Proof.
revert m; induction on l as IHl with measure (length l); revert l IHl.
intros [ | x l ] IHl [ | y m ]; simpl; intros H1 H2; auto; try omega;
try (destruct (H2 y); simpl; auto; fail).
apply le_S_n in H1.
apply incl_left_right_php in H2.
destruct H2 as [ H2
| [ (H2 & H3)
| [ (H2 & H3)
| (H2 & m' & H3 & H4) ] ] ]; auto; try subst y.
* destruct IHl with (3 := H3); auto.
left; apply in_list_hd1; auto.
* destruct IHl with (3 := H3); auto.
+ left; apply in_list_hd1; auto.
+ left; apply in_list_hd0; revert H2.
apply Permutation_in, Permutation_sym; auto.
* apply perm_in_head in H2; destruct H2 as (l' & Hl').
apply Permutation_sym in H3.
apply perm_incl_right with (1 := Hl'),
incl_right_cons_choose in H4.
destruct H4 as [ H4 | H4 ].
+ left; apply in_list_hd0, Permutation_in with (1 := H3); right; auto.
+ destruct IHl with (3 := H4) as [ H5 | H5 ].
- apply Permutation_length in Hl'; simpl in Hl' |- *; omega.
- apply Permutation_length in Hl'.
apply Permutation_length in H3.
simpl in Hl', H3; omega.
- left; apply perm_list_has_dup in H3; apply in_list_hd1; auto.
- { right; apply Permutation_trans with (y::x::m').
+ apply perm_skip, Permutation_sym; auto.
+ apply Permutation_trans with (1 := perm_swap _ _ _),
perm_skip, Permutation_sym,
Permutation_trans with (1 := Hl'),
perm_skip, Permutation_sym; auto. }
Qed.
If m is strictly longer than l
and m is (set) included in l
then it has a duplicate
This proof does not require weakly decidable equality
and it does not find where is the duplicate
Theorem finite_pigeon_hole l m :
length l < length m
-> incl m l
-> exists x aa bb cc, m = aa++x::bb++x::cc.
Proof.
intros H1 H2; apply list_has_dup_eq_duplicates.
destruct (@length_le_and_incl_implies_dup_or_perm l m) as [ | H3 ]; auto;
[ | apply Permutation_length in H3 ]; omega.
Qed.
Theorem partition_intersection l m k :
length k < length (l++m)
-> incl (l++m) k
-> list_has_dup l
\/ list_has_dup m
\/ exists x, In x l /\ In x m.
Proof.
intros H1 H2.
apply list_has_dup_app_inv, list_has_dup_eq_duplicates.
revert H1 H2; apply finite_pigeon_hole.
Qed.
End pigeon_list.
Fact not_list_has_dup_an a n : ~ list_has_dup (list_an a n).
Proof.
revert a; induction n as [ | n IHn ]; simpl; intros a H.
+ inversion H.
+ apply list_hd_cons_inv in H.
rewrite list_an_spec in H.
destruct H as [ | H ]; try omega.
revert H; apply IHn.
Qed.
Fact list_has_dup_map_inv X Y (f : X -> Y) l :
(forall x y, In x l -> In y l -> f x = f y -> x = y)
-> list_has_dup (map f l)
-> list_has_dup l.
Proof.
intros H; do 2 rewrite list_has_dup_eq_duplicates.
intros (y & m1 & m2 & m3 & E).
apply map_app_inv in E; destruct E as (l1 & l10 & H1 & H2 & H3); symmetry in H3.
apply map_cons_inv in H3; destruct H3 as (x1 & l11 & H3 & H4 & H5).
apply map_app_inv in H5; destruct H5 as (l2 & l12 & H5 & H6 & H7); symmetry in H7.
apply map_cons_inv in H7; destruct H7 as (x2 & l3 & H7 & H8 & H9); subst.
apply H in H8; subst.
+ exists x1, l1, l2, l3; auto.
+ apply in_or_app; right; right; simpl.
apply in_or_app; simpl; auto.
+ apply in_or_app; simpl; auto.
Qed.
Fact not_list_an_has_dup a n : ~ list_has_dup (list_an a n).
Proof.
revert a; induction n as [ | n IHn ]; simpl; intros a H.
+ inversion H.
+ apply list_hd_cons_inv in H.
rewrite list_an_spec in H.
destruct H as [ | H ]; try omega.
revert H; apply IHn.
Qed.
Fact list_exists X Y (R : X -> Y -> Prop) l : (forall x, In x l -> exists y, R x y) -> exists ll, Forall2 R l ll.
Proof.
induction l as [ | x l IHl ]; intros Hl.
exists nil; constructor.
destruct (Hl x) as (y & Hy).
left; auto.
destruct IHl as (ll & Hll).
intros; apply Hl; right; auto.
exists (y::ll); constructor; auto.
Qed.
Fact Forall2_conj X Y (R S : X -> Y -> Prop) ll mm : Forall2 (fun x y => R x y /\ S x y) ll mm <-> Forall2 R ll mm /\ Forall2 S ll mm.
Proof.
split.
induction 1; split; constructor; tauto.
intros [H1 H2]; revert H1 H2.
induction 1 as [ | x ll y mm H1 H2 IH ]; intros H; auto.
apply Forall2_cons_inv in H; constructor; tauto.
Qed.
Fact Forall2_length X Y (R : X -> Y -> Prop) l m : Forall2 R l m -> length l = length m.
Proof. induction 1; simpl; f_equal; auto. Qed.
Fact Forall2_impl X Y (R S : X -> Y -> Prop) :
(forall x y, R x y -> S x y) -> forall l m, Forall2 R l m -> Forall2 S l m.
Proof. induction 2; constructor; auto. Qed.
Fact Forall2_right_Forall X Y (P : Y -> Prop) lx ly : Forall2 (fun (_ : X) y => P y) lx ly <-> Forall P ly /\ length lx = length ly.
Proof.
split.
intros H; split.
induction H; constructor; auto.
revert H; apply Forall2_length.
intros (H1 & H2); revert lx H2.
induction H1; intros [ | ] H2; try discriminate H2; constructor; auto.
Qed.
Fact Forall2_app_inv_r X Y R l m1 m2 :
@Forall2 X Y R l (m1++m2)
-> { l1 : _ & { l2 | Forall2 R l1 m1 /\ Forall2 R l2 m2 /\ l = l1++l2 } }.
Proof.
revert m2 l;
induction m1 as [ | y m1 IH ]; simpl; intros m2 l H.
exists nil, l; repeat split; auto.
destruct l as [ | x l ].
apply Forall2_nil_inv_l in H; discriminate H.
apply Forall2_cons_inv in H; destruct H as [ H1 H2 ].
apply IH in H2.
destruct H2 as (l1 & l2 & H2 & H3 & H4); subst l.
exists (x::l1), l2; repeat split; auto.
Qed.
Section PHP_rel.
Variable (U V : Type) (S : U -> V -> Prop) (l : list U) (m : list V)
(HS : forall x, In x l -> exists y, In y m /\ S x y).
Let sigma : exists Sm, incl Sm m /\ Forall2 S l Sm.
Proof.
destruct (list_exists _ l HS) as (Sm & Hsm).
exists Sm; split.
+ clear HS.
rewrite Forall2_conj in Hsm.
apply proj1, Forall2_right_Forall, proj1 in Hsm.
rewrite Forall_forall in Hsm; auto.
+ revert Hsm; apply Forall2_impl; tauto.
Qed.
Hypothesis (Hlm : length m < length l).
Theorem PHP_rel : exists a x b y c v, l = a++x::b++y::c
/\ In v m /\ S x v /\ S y v.
Proof.
destruct sigma as (Sm & H1 & H2).
destruct finite_pigeon_hole with (2 := H1) as (v & x & y & z & H).
+ apply Forall2_length in H2; omega.
+ subst Sm.
apply Forall2_app_inv_r in H2; destruct H2 as (x' & l1 & H3 & H2 & ?); subst.
apply Forall2_cons_inv_r in H2; destruct H2 as (v' & l2 & H4 & ? & H2); subst.
apply Forall2_app_inv_r in H2; destruct H2 as (y' & l3 & H5 & H2 & ?); subst.
apply Forall2_cons_inv_r in H2; destruct H2 as (v'' & l4 & H6 & ? & H2); subst.
exists x', v', y', v'', l4, v; repeat (split; auto).
apply H1, in_or_app; simpl; auto.
Qed.
End PHP_rel.
Check PHP_rel.