(**************************************************************)
(*   Copyright Dominique Larchey-Wendling *                 *)
(*                                                            *)
(*                             * Affiliation LORIA -- CNRS  *)
(**************************************************************)
(*      This file is distributed under the terms of the       *)
(*         CeCILL v2 FREE SOFTWARE LICENSE AGREEMENT          *)
(**************************************************************)

Shared libraries

Finitary sums and products over monoids


Require Import List Arith Omega Eqdep_dec ZArith.

Require Import utils_tac utils_list binomial.

Set Implicit Arguments.

Record monoid_theory (X : Type) (m : X -> X -> X) (u : X) := mk_monoid {
  monoid_unit_l : forall x, m u x = x;
  monoid_unit_r : forall x, m x u = x;
  monoid_assoc : forall x y z, m x (m y z) = m (m x y) z;
}.

Fact Nat_plus_monoid : monoid_theory plus 0.
Proof. exists; intros; ring. Qed.

Fact Nat_mult_monoid : monoid_theory mult 1.
Proof. exists; intros; ring. Qed.

Fact Zplus_monoid : monoid_theory Zplus 0%Z.
Proof. exists; intros; ring. Qed.

Fact Zmult_monoid : monoid_theory Zmult 1%Z.
Proof. exists; intros; ring. Qed.

Hint Resolve Nat_plus_monoid Nat_mult_monoid
             Zplus_monoid Zmult_monoid.

Section msum.

  Variable (X : Type) (m : X -> X -> X) (u : X).

  Infix "⊕" := m (at level 50, left associativity).

  Fixpoint msum n f :=
    match n with
      | 0 => u
      | S n => f 0 msum n (fun n => f (S n))
    end.

  Notation "∑" := msum.

  Fact msum_fold_map n f : n f = fold_right m u (map f (list_an 0 n)).
  Proof.
    revert f; induction n as [ | n IHn ]; intros f; simpl; f_equal; auto.
    rewrite IHn, <- map_S_list_an, map_map; auto.
  Qed.

  Fact msum_0 f : 0 f = u.
  Proof. auto. Qed.

  Fact msum_S n f : (S n) f = f 0 n (fun n => f (S n)).
  Proof. auto. Qed.

  Hypothesis Hmonoid : monoid_theory m u.

  Fact msum_1 f : 1 f = f 0.
  Proof.
    destruct Hmonoid as [ H1 H2 ].
    rewrite msum_S, msum_0, H2; auto.
  Qed.

  Fact msum_plus a b f : (a+b) f = a f b (fun i => f (a+i)).
  Proof.
    destruct Hmonoid as [ H1 _ H3 ].
    revert f; induction a as [ | a IHa ]; intros f; simpl; auto.
    rewrite <- H3; f_equal; apply IHa.
  Qed.

  Fact msum_plus1 n f : (S n) f = n f f n.
  Proof.
    destruct Hmonoid as [ _ H2 _ ].
    replace (S n) with (n+1) by omega.
    rewrite msum_plus; simpl; f_equal.
    rewrite H2; f_equal; omega.
  Qed.

  Fact msum_ext n f g : (forall i, i < n -> f i = g i) -> n f = n g.
  Proof.
    revert f g; induction n as [ | n IHn ]; intros f g Hfg; simpl; f_equal; auto.
    + apply Hfg; omega.
    + apply IHn; intros; apply Hfg; omega.
  Qed.

  Fact msum_unit n : n (fun _ => u) = u.
  Proof.
    destruct Hmonoid as [ H1 _ _ ].
    induction n as [ | n IHn ]; simpl; auto.
    rewrite IHn; auto.
  Qed.

  Fact msum_comm a n f : (forall i, i < n -> f i a = a f i) -> n f a = a n f.
  Proof.
    destruct Hmonoid as [ H1 H2 H3 ].
    revert f; induction n as [ | n IHn ]; intros f H; simpl; auto.
    + rewrite H1, H2; auto.
    + rewrite H3, <- H; try omega.
      repeat rewrite <- H3; f_equal.
      apply IHn.
      intros; apply H; omega.
  Qed.

  Fact msum_sum n f g : (forall i j, i < j < n -> f j g i = g i f j) -> n (fun i => f i g i) = n f n g.
  Proof.
    destruct Hmonoid as [ H1 H2 H3 ].
    revert f g; induction n as [ | n IHn ]; intros f g H; simpl; auto.
    rewrite IHn.
    + repeat rewrite <- H3; f_equal.
      repeat rewrite H3; f_equal.
      symmetry; apply msum_comm.
      intros; apply H; omega.
    + intros; apply H; omega.
  Qed.

  Fact msum_of_unit n f : (forall i, i < n -> f i = u) -> n f = u.
  Proof.
    intros H.
    rewrite <- (msum_unit n).
    apply msum_ext; auto.
  Qed.

  Fact msum_only_one n f i : i < n
                          -> (forall j, j < n -> i <> j -> f j = u)
                          -> n f = f i.
  Proof.
    destruct Hmonoid as [ M1 M2 M3 ].
    intros H1 H2.
    replace n with (i + 1 + (n-i-1)) by omega.
    do 2 rewrite msum_plus.
    rewrite msum_of_unit, msum_1, msum_of_unit, M1, M2.
    + f_equal; omega.
    + intros j Hj; destruct (H2 (i+1+j)); auto; omega.
    + intros j Hj; destruct (H2 j); auto; omega.
  Qed.

  Fact msum_msum n k f :
          (forall i1 j1 i2 j2, i1 < n -> j1 < k -> i2 < n -> j2 < k -> f i1 j1 f i2 j2 = f i2 j2 f i1 j1)
       -> n (fun i => k (f i)) = k (fun j => n (fun i => f i j)).
  Proof.
    revert k f; induction n as [ | n IHn ]; intros k f Hf.
    + rewrite msum_0, msum_of_unit; auto.
    + rewrite msum_S, IHn.
      * rewrite <- msum_sum.
        - apply msum_ext.
          intros; rewrite msum_S; trivial.
        - intros; symmetry; apply msum_comm.
          intros; apply Hf; omega.
      * intros; apply Hf; omega.
  Qed.

  Fact msum_ends n f : (forall i, 0 < i <= n -> f i = u) -> (n+2) f = f 0 f (S n).
  Proof.
    destruct Hmonoid as [ H1 H2 H3 ].
    intros H.
    replace (n+2) with (1 + n + 1) by omega.
    do 2 rewrite msum_plus; simpl.
    rewrite msum_of_unit.
    + rewrite H2, H2, H2; do 2 f_equal; omega.
    + intros; apply H; omega.
  Qed.

  Fact msum_first_two n f : 2 <= n -> (forall i, 2 <= i -> f i = u) -> n f = f 0 f 1.
  Proof.
    destruct Hmonoid as [ _ M2 _ ].
    intros Hn H1.
    destruct n as [ | [ | n ] ]; try omega.
    do 2 rewrite msum_S.
    rewrite msum_of_unit.
    + rewrite M2; trivial.
    + intros; apply H1; omega.
  Qed.

  Definition mscal n x := msum n (fun _ => x).

  Fact mscal_0 x : mscal 0 x = u.
  Proof. apply msum_0. Qed.

  Fact mscal_S n x : mscal (S n) x = x mscal n x.
  Proof. apply msum_S. Qed.

  Fact mscal_1 x : mscal 1 x = x.
  Proof.
    destruct Hmonoid as [ _ H2 _ ].
    rewrite mscal_S, mscal_0, H2; trivial.
  Qed.

  Fact mscal_of_unit n : mscal n u = u.
  Proof. apply msum_of_unit; auto. Qed.

  Fact mscal_plus a b x : mscal (a+b) x = mscal a x mscal b x.
  Proof. apply msum_plus. Qed.

  Fact mscal_plus1 n x : mscal (S n) x = mscal n x x.
  Proof. apply msum_plus1. Qed.

  Fact mscal_comm n x y : x y = y x -> mscal n x y = y mscal n x.
  Proof. intros H; apply msum_comm; auto. Qed.

  Fact mscal_sum n x y : x y = y x -> mscal n (x y) = mscal n x mscal n y.
  Proof. intro; apply msum_sum; auto. Qed.

  Fact mscal_mult a b x : mscal (a*b) x = mscal a (mscal b x).
  Proof.
    induction a as [ | a IHa ]; simpl.
    + do 2 rewrite mscal_0; auto.
    + rewrite mscal_plus, IHa, mscal_S; auto.
  Qed.

  Fact msum_mscal n k f : (forall i j, i < n -> j < n -> f i f j = f j f i)
                       -> n (fun i => mscal k (f i)) = mscal k ( n f).
  Proof. intros H; apply msum_msum; auto. Qed.

End msum.

Section msum_morphism.

  Variable (X Y : Type) (m1 : X -> X -> X) (u1 : X)
                        (m2 : Y -> Y -> Y) (u2 : Y)
           (H1 : monoid_theory m1 u1)
           (H2 : monoid_theory m2 u2)
           (phi : X -> Y)
           (Hphi1 : phi u1 = u2)
           (Hphi2 : forall x y, phi (m1 x y) = m2 (phi x) (phi y)).

  Fact msum_morph n f : phi (msum m1 u1 n f) = msum m2 u2 n (fun x => phi (f x)).
  Proof.
    revert f; induction n as [ | n IHn ]; intros f; simpl; auto.
    rewrite Hphi2, IHn; trivial.
  Qed.

  Fact mscal_morph n x : phi (mscal m1 u1 n x) = mscal m2 u2 n (phi x).
  Proof. apply msum_morph. Qed.

End msum_morphism.

Section binomial_Newton.

  Variable (X : Type) (sum times : X -> X -> X) (zero one : X).

  Infix "⊕" := sum (at level 50, left associativity).
  Infix "⊗" := times (at level 40, left associativity).

  Notation z := zero.
  Notation o := one.

  Notation scal := (mscal sum zero).
  Notation expo := (mscal times one).

  Hypothesis (M_sum : monoid_theory sum zero)
             (sum_comm : forall x y, x y = y x)
             (sum_cancel : forall x u v, x u = x v -> u = v)
             (M_times : monoid_theory times one)
             (distr_l : forall x y z, x (yz) = xy xz)
             (distr_r : forall x y z, (yz) x = yx zx).

  Fact times_zero_l x : z x = z.
  Proof.
    destruct M_sum as [ S1 S2 S3 ].
    destruct M_times as [ T1 T2 T3 ].
    apply sum_cancel with (zx).
    rewrite S2, <- distr_r, S1; trivial.
  Qed.

  Fact times_zero_r x : x z = z.
  Proof.
    destruct M_sum as [ S1 S2 S3 ].
    destruct M_times as [ T1 T2 T3 ].
    apply sum_cancel with (xz).
    rewrite S2, <- distr_l, S1; trivial.
  Qed.

  Notation "∑" := (msum sum zero).

  Fact sum_0n_scal n k f : n (fun i => scal k (f i)) = scal k ( n f).
  Proof. apply msum_mscal; auto. Qed.

  Fact scal_times k x y : scal k (xy) = xscal k y.
  Proof.
    destruct M_sum as [ S1 S2 S3 ].
    destruct M_times as [ T1 T2 T3 ].
    induction k as [ | k IHk ].
    + rewrite mscal_0, mscal_0, times_zero_r; auto.
    + rewrite mscal_S, mscal_S, IHk, distr_l; auto.
  Qed.

  Fact scal_one_comm k x : scal k o x = x scal k o.
  Proof.
    destruct M_times as [ T1 T2 T3 ].
    induction k as [ | k IHk ].
    + rewrite mscal_0, times_zero_l, times_zero_r; auto.
    + rewrite mscal_S, distr_l, distr_r; f_equal; auto.
      rewrite T1, T2; auto.
  Qed.

  Corollary scal_one k x : scal k x = scal k o x.
  Proof.
    destruct M_times as [ T1 T2 T3 ].
    rewrite <- (T2 x) at 1.
    rewrite scal_times.
    symmetry; apply scal_one_comm.
  Qed.

  Fact sum_0n_distr_l b n f : n (fun i => bf i) = b n f.
  Proof.
    revert f; induction n as [ | n IHn ]; intros f.
    + do 2 rewrite msum_0; rewrite times_zero_r; auto.
    + do 2 rewrite msum_S; rewrite IHn, distr_l; auto.
  Qed.

  Fact sum_0n_distr_r b n f : n (fun i => f ib) = n f b.
  Proof.
    revert f; induction n as [ | n IHn ]; intros f.
    + do 2 rewrite msum_0; rewrite times_zero_l; auto.
    + do 2 rewrite msum_S; rewrite IHn, distr_r; auto.
  Qed.

Newton Binomial theorem for (X,⊕,z,⊗,o) where 1) (X,⊕,z) is a cancellative commutative monoid 2) (X,⊗,o) is a monoid 3) ⊗ distributes over ⊕ on the left and one the right
cancellative could be weakened into z is left and right absorbing for ⊗, ie a⊗z = z⊗a = z

  Theorem binomial_Newton n a b :
        a b = b a
     -> expo n (a b) = (S n) (fun i => scal (binomial n i) (expo (n - i) a expo i b)).
  Proof.
    destruct M_sum as [ S1 S2 S3 ].
    destruct M_times as [ T1 T2 T3 ].
    intros Hab; induction n as [ | n IHn ].
    + rewrite mscal_0, msum_S, msum_0; simpl.
      rewrite mscal_0, mscal_0, mscal_1; auto.
      rewrite S2, T1; auto.
    + rewrite msum_S with (n := S n), binomial_n0, mscal_1; auto.
      rewrite mscal_0, Nat.sub_0_r; auto.
      rewrite T2.
      rewrite msum_ext with (g := fun i => b scal (binomial n i) (expo (n-i) a expo i b)
                                          a scal (binomial n (S i)) (expo (n-S i) a expo (S i) b)).
      2: { intros; rewrite binomial_SS, mscal_plus; auto.
           replace (S n - S i) with (n-i) by omega; f_equal.
           * rewrite mscal_S.
             do 3 rewrite scal_times.
             do 2 rewrite T3; f_equal.
             apply mscal_comm; auto.
           * destruct (le_lt_dec n i).
             + rewrite binomial_gt; try omega.
               do 2 rewrite mscal_0.
               rewrite times_zero_r; auto.
             + replace (n - i) with (S (n - S i)) by omega.
               rewrite mscal_S.
               repeat rewrite scal_times.
               repeat rewrite T3; auto. }
      rewrite msum_sum; auto.
      do 2 rewrite sum_0n_distr_l.
      rewrite <- IHn.
      rewrite msum_plus1, binomial_gt; auto.
      rewrite mscal_0, S2.
      generalize (msum_S sum z n (fun i => scal (binomial n i) (expo (n-i) a expo i b))); intros H.
      rewrite Nat.sub_0_r, binomial_n0, mscal_1, mscal_0, T2 in H; auto.
      rewrite S3, (sum_comm (expo _ _)), <- S3.
      rewrite mscal_S with (x :=a), <- distr_l, <- H, <- IHn.
      rewrite mscal_S, distr_r.
      apply sum_comm.
  Qed.

End binomial_Newton.

Section Newton_nat.

  Notation power := (mscal mult 1).
  Notation "∑" := (msum plus 0).

  Fact sum_fold_map n f : n f = fold_right plus 0 (map f (list_an 0 n)).
  Proof. apply msum_fold_map. Qed.

  Fact power_0 x : power 0 x = 1.
  Proof. apply mscal_0. Qed.

  Fact power_S n x : power (S n) x = x * power n x.
  Proof. apply mscal_S. Qed.

  Fact power_1 x : power 1 x = x.
  Proof. apply mscal_1, Nat_mult_monoid. Qed.

  Fact power_of_0 n : 0 < n -> power n 0 = 0.
  Proof. destruct n; try omega; rewrite power_S; auto. Qed.

  Fact power_of_1 n : power n 1 = 1.
  Proof. rewrite mscal_of_unit; auto. Qed.

  Fact power_plus p a b : power (a+b) p = power a p * power b p.
  Proof. apply mscal_plus, Nat_mult_monoid. Qed.

  Fact power_mult p a b : power (a*b) p = power a (power b p).
  Proof. apply mscal_mult; auto. Qed.

  Fact power_ge_1 k p : p <> 0 -> 1 <= power k p.
  Proof.
    intros Hp.
    induction k as [ | k IHk ].
    + rewrite power_0; auto.
    + rewrite power_S.
      apply (mult_le_compat 1 _ 1); omega.
  Qed.

  Fact power2_gt_0 n : 0 < power n 2.
  Proof. apply power_ge_1; discriminate. Qed.

  Fact power_sinc k p : 2 <= p -> power k p < power (S k) p.
  Proof.
    intros Hp; rewrite power_S.
    rewrite <- (Nat.mul_1_l (power k p)) at 1.
    apply mult_lt_compat_r; try omega.
    apply power_ge_1; omega.
  Qed.

  Fact power_ge_n k p : 2 <= p -> k <= power k p.
  Proof.
    intros Hp.
    induction k as [ | k IHk ].
    + rewrite power_0; auto.
    + apply le_lt_trans with (2 := power_sinc _ Hp); auto.
  Qed.

  Fact power_mono_l p q x : 1 <= x -> p <= q -> power p x <= power q x.
  Proof.
    intros Hx.
    induction 1 as [ | q H IH ]; auto.
    apply le_trans with (1 := IH).
    rewrite power_S.
    rewrite <- (Nat.mul_1_l (power _ _)) at 1.
    apply mult_le_compat; auto.
  Qed.

  Definition power_mono := power_mono_l.

  Fact power_smono_l p q x : 2 <= x -> p < q -> power p x < power q x.
  Proof.
    intros H1 H2.
    apply lt_le_trans with (1 := power_sinc _ H1).
    apply power_mono_l; omega.
  Qed.

  Fact power_mono_r n p q : p <= q -> power n p <= power n q.
  Proof.
    intros H.
    induction n as [ | n IHn ].
    + do 2 rewrite power_0; auto.
    + do 2 rewrite power_S; apply mult_le_compat; auto.
  Qed.

  Fact power_0_inv p n : power p n = 0 <-> n = 0 /\ 0 < p.
  Proof.
    induction p as [ | p IHp ].
    + rewrite power_0; omega.
    + rewrite power_S; split.
      * intros H.
        apply mult_is_O in H.
        rewrite IHp in H; omega.
      * intros (?&?); subst; simpl; auto.
  Qed.

  Fact plus_cancel_l : forall a b c, a + b = a + c -> b = c.
  Proof. intros; omega. Qed.

  Let plus_cancel_l':= plus_cancel_l.

  Fact sum_0n_scal_l n k f : n (fun i => k*f i) = k* n f.
  Proof.
    apply sum_0n_distr_l with (3 := Nat_mult_monoid); auto.
    intros; ring.
  Qed.

  Fact sum_0n_scal_r n k f : n (fun i => (f i)*k) = ( n f)*k.
  Proof.
    apply sum_0n_distr_r with (3 := Nat_mult_monoid); auto.
    intros; ring.
  Qed.

  Fact sum_0n_mono n f g : (forall i, i < n -> f i <= g i) -> n f <= n g.
  Proof.
    revert f g; induction n as [ | n IHn ]; intros f g H.
    + do 2 rewrite msum_0; auto.
    + do 2 rewrite msum_S; apply plus_le_compat.
      * apply H; omega.
      * apply IHn; intros; apply H; omega.
  Qed.

  Fact sum_0n_le_one n f i : i < n -> f i <= n f.
  Proof.
    revert f i; induction n as [ | n IHn ]; intros f i H.
    + omega.
    + rewrite msum_S.
      destruct i as [ | i ]; try omega.
      apply lt_S_n, IHn with (f := fun i => f (S i)) in H.
      omega.
  Qed.

  Fact sum_power_lt k n f : k <> 0 -> (forall i, i < n -> f i < k) -> n (fun i => f i * power i k) < power n k.
  Proof.
    intros Hk.
    revert f; induction n as [ | n IHn ]; intros f Hf.
    + rewrite msum_0, power_0; omega.
    + rewrite msum_S, power_S, power_0, Nat.mul_1_r.
      apply le_trans with (k+ k * (power n k-1)).
      * apply (@plus_le_compat (S (f 0))).
        - apply Hf; omega.
        - rewrite msum_ext with (g := fun i => k*(f (S i)*power i k)).
          ++ rewrite sum_0n_distr_l with (one := 1); auto; try (intros; ring).
             apply mult_le_compat_l.
             apply le_S_n, le_trans with (power n k); try omega.
             apply IHn; intros; apply Hf; omega.
          ++ intros; rewrite power_S; ring.
      * generalize (power_ge_1 n Hk); intros ?.
        replace (power n k) with (1+(power n k - 1)) at 2 by omega.
        rewrite Nat.mul_add_distr_l.
        apply plus_le_compat; omega.
  Qed.

  Theorem Newton_nat a b n :
       power n (a + b) = (S n) (fun i => binomial n i * power (n - i) a * power i b).
  Proof.
    rewrite binomial_Newton with (1 := Nat_plus_monoid) (4 := Nat_mult_monoid); try (intros; ring); auto.
    apply msum_ext; intros i Hi.
    rewrite scal_one with (1 := Nat_plus_monoid) (3 := Nat_mult_monoid); auto; try (intros; ring).
    rewrite <-mult_assoc; f_equal; auto.
    generalize (binomial n i); intros k.
    induction k as [ | k IHk ].
    + rewrite mscal_0; auto.
    + rewrite mscal_S, IHk; auto; apply plus_cancel_l.
  Qed.

  Theorem Newton_nat_S a n :
       power n (1 + a) = (S n) (fun i => binomial n i * power i a).
  Proof.
    rewrite Newton_nat.
    apply msum_ext.
    intros; rewrite power_of_1; ring.
  Qed.

  Lemma binomial_le_power n i : binomial n i <= power n 2.
  Proof.
    destruct (le_lt_dec i n) as [ Hi | Hi ].
    + change 2 with (1+1).
      rewrite Newton_nat_S.
      eapply le_trans.
      2:{ apply sum_0n_le_one with (f := fun i => binomial n i * power i 1).
          apply le_n_S, Hi. }
      rewrite power_of_1; omega.
    + rewrite binomial_gt; auto; omega.
  Qed.

  Corollary binomial_lt_power n i : binomial n i < power (S n) 2.
  Proof.
    apply le_lt_trans with (1 := binomial_le_power _ _), power_sinc; auto.
  Qed.

End Newton_nat.