(**************************************************************)
(* Copyright Dominique Larchey-Wendling * *)
(* *)
(* * Affiliation LORIA -- CNRS *)
(**************************************************************)
(* This file is distributed under the terms of the *)
(* CeCILL v2 FREE SOFTWARE LICENSE AGREEMENT *)
(**************************************************************)
Require Import List Arith Omega.
Require Import utils.
Set Implicit Arguments.
Inductive pos : nat -> Set :=
| pos_fst : forall n, pos (S n)
| pos_nxt : forall n, pos n -> pos (S n).
Arguments pos_fst {n}.
Arguments pos_nxt {n}.
Notation pos0 := (@pos_fst _).
Notation pos1 := (pos_nxt pos0).
Notation pos2 := (pos_nxt pos1).
Notation pos3 := (pos_nxt pos2).
Notation pos4 := (pos_nxt pos3).
Notation pos5 := (pos_nxt pos4).
Notation pos6 := (pos_nxt pos5).
Notation pos7 := (pos_nxt pos6).
Notation pos8 := (pos_nxt pos7).
Notation pos9 := (pos_nxt pos8).
Notation pos10 := (pos_nxt pos9).
Notation pos11 := (pos_nxt pos10).
Notation pos12 := (pos_nxt pos11).
Notation pos13 := (pos_nxt pos12).
Notation pos14 := (pos_nxt pos13).
Notation pos15 := (pos_nxt pos14).
Notation pos16 := (pos_nxt pos15).
Notation pos17 := (pos_nxt pos16).
Notation pos18 := (pos_nxt pos17).
Notation pos19 := (pos_nxt pos18).
Notation pos20 := (pos_nxt pos19).
Definition pos_iso n m : n = m -> pos n -> pos m.
Proof. intros []; auto. Defined.
Section pos_inv.
Let pos_inv_t n :=
match n as x return pos x -> Set with
| 0 => fun _ => False
| S n => fun i => (( i = pos_fst ) + { p | i = pos_nxt p })%type
end.
Let pos_inv : forall n p, @pos_inv_t n p.
Proof.
intros _ [ | n p ]; simpl; [ left | right ]; auto; exists p; auto.
Defined.
Definition pos_O_inv : pos 0 -> False.
Proof. apply pos_inv. Defined.
Definition pos_S_inv n (p : pos (S n)) : ( p = pos_fst ) + { q | p = pos_nxt q }.
Proof. apply (pos_inv p). Defined.
Definition pos_nxt_inj n (p q : pos n) (H : pos_nxt p = pos_nxt q) : p = q :=
match H in _ = a return
match a as a' in pos m return
match m with
| 0 => Prop
| S n' => pos n' -> Prop
end with
| pos_fst => fun _ => True
| pos_nxt y => fun x' => x' = y
end p with
| eq_refl => eq_refl
end.
End pos_inv.
Arguments pos_S_inv {n} p /.
Section pos_invert.
(* Position inversion, "singleton elimination" free version
One problem remains to fully use it ... it is not
correctly traversed by type checking algorithm
of fixpoints (structural recursion)
pos_S_inv work better in that respect
*)
Let pos_invert_t n : (pos n -> Type) -> Type :=
match n with
0 => fun P => True
| S n => fun P => (P (pos_fst) * forall p, P (pos_nxt p))%type
end.
Let pos_invert n : forall (P : pos n -> Type), pos_invert_t P -> forall p, P p.
Proof.
intros P HP; induction p; simpl in HP; apply HP.
Defined.
Theorem pos_O_invert X : pos 0 -> X.
Proof.
apply pos_invert; simpl; trivial.
Defined.
Theorem pos_S_invert n P : P (@pos_fst n) -> (forall p, P (pos_nxt p)) -> forall p, P p.
Proof.
intros; apply pos_invert; split; auto.
Defined.
End pos_invert.
Arguments pos_S_invert [n] P _ _ p /.
Ltac pos_O_inv p := exfalso; apply (pos_O_inv p).
Ltac pos_S_inv p :=
let H := fresh in
let q := fresh
in rename p into q; destruct (pos_S_inv q) as [ H | (p & H) ]; subst q.
(*
Ltac pos_O_inv p := apply (@pos_O_invert _ p).
Ltac pos_S_inv x := induction x as | x using pos_S_invert.
*)
Ltac pos_inv p :=
match goal with
| [ H: pos 0 |- _ ] => match H with p => pos_O_inv p end
| [ H: pos (S _) |- _ ] => match H with p => pos_S_inv p end
end.
Tactic Notation "invert" "pos" hyp(H) := pos_inv H; simpl.
Ltac analyse_pos p :=
match type of p with
| pos 0 => pos_inv p
| pos (S _) => pos_inv p; [ | try analyse_pos p ]
end.
Tactic Notation "analyse" "pos" hyp(p) := analyse_pos p.
Definition pos_O_any X : pos 0 -> X.
Proof. intro p; invert pos p. Qed.
Fixpoint pos_left n m (p : pos n) : pos (n+m) :=
match p with
| pos_fst => pos_fst
| pos_nxt p => pos_nxt (pos_left m p)
end.
Fixpoint pos_right n m : pos m -> pos (n+m) :=
match n with
| 0 => fun x => x
| S n => fun p => pos_nxt (pos_right n p)
end.
Definition pos_both n m : pos (n+m) -> pos n + pos m.
Proof.
induction n as [ | n IHn ]; intros p.
+ right; exact p.
+ simpl in p; pos_inv p.
* left; apply pos_fst.
* destruct (IHn p) as [ a | b ].
- left; apply (pos_nxt a).
- right; apply b.
Defined.
Definition pos_lr n m : pos n + pos m -> pos (n+m).
Proof.
intros [ p | p ]; revert p.
+ apply pos_left.
+ apply pos_right.
Defined.
Fact pos_both_left n m p : @pos_both n m (@pos_left n m p) = inl p.
Proof.
induction p as [ | n p IHp ]; simpl; auto.
rewrite IHp; auto.
Qed.
Fact pos_both_right n m p : @pos_both n m (@pos_right n m p) = inr p.
Proof.
revert p; induction n as [ | n IHn]; intros p; simpl; auto.
rewrite IHn; auto.
Qed.
(* Copyright Dominique Larchey-Wendling * *)
(* *)
(* * Affiliation LORIA -- CNRS *)
(**************************************************************)
(* This file is distributed under the terms of the *)
(* CeCILL v2 FREE SOFTWARE LICENSE AGREEMENT *)
(**************************************************************)
Require Import List Arith Omega.
Require Import utils.
Set Implicit Arguments.
Inductive pos : nat -> Set :=
| pos_fst : forall n, pos (S n)
| pos_nxt : forall n, pos n -> pos (S n).
Arguments pos_fst {n}.
Arguments pos_nxt {n}.
Notation pos0 := (@pos_fst _).
Notation pos1 := (pos_nxt pos0).
Notation pos2 := (pos_nxt pos1).
Notation pos3 := (pos_nxt pos2).
Notation pos4 := (pos_nxt pos3).
Notation pos5 := (pos_nxt pos4).
Notation pos6 := (pos_nxt pos5).
Notation pos7 := (pos_nxt pos6).
Notation pos8 := (pos_nxt pos7).
Notation pos9 := (pos_nxt pos8).
Notation pos10 := (pos_nxt pos9).
Notation pos11 := (pos_nxt pos10).
Notation pos12 := (pos_nxt pos11).
Notation pos13 := (pos_nxt pos12).
Notation pos14 := (pos_nxt pos13).
Notation pos15 := (pos_nxt pos14).
Notation pos16 := (pos_nxt pos15).
Notation pos17 := (pos_nxt pos16).
Notation pos18 := (pos_nxt pos17).
Notation pos19 := (pos_nxt pos18).
Notation pos20 := (pos_nxt pos19).
Definition pos_iso n m : n = m -> pos n -> pos m.
Proof. intros []; auto. Defined.
Section pos_inv.
Let pos_inv_t n :=
match n as x return pos x -> Set with
| 0 => fun _ => False
| S n => fun i => (( i = pos_fst ) + { p | i = pos_nxt p })%type
end.
Let pos_inv : forall n p, @pos_inv_t n p.
Proof.
intros _ [ | n p ]; simpl; [ left | right ]; auto; exists p; auto.
Defined.
Definition pos_O_inv : pos 0 -> False.
Proof. apply pos_inv. Defined.
Definition pos_S_inv n (p : pos (S n)) : ( p = pos_fst ) + { q | p = pos_nxt q }.
Proof. apply (pos_inv p). Defined.
Definition pos_nxt_inj n (p q : pos n) (H : pos_nxt p = pos_nxt q) : p = q :=
match H in _ = a return
match a as a' in pos m return
match m with
| 0 => Prop
| S n' => pos n' -> Prop
end with
| pos_fst => fun _ => True
| pos_nxt y => fun x' => x' = y
end p with
| eq_refl => eq_refl
end.
End pos_inv.
Arguments pos_S_inv {n} p /.
Section pos_invert.
(* Position inversion, "singleton elimination" free version
One problem remains to fully use it ... it is not
correctly traversed by type checking algorithm
of fixpoints (structural recursion)
pos_S_inv work better in that respect
*)
Let pos_invert_t n : (pos n -> Type) -> Type :=
match n with
0 => fun P => True
| S n => fun P => (P (pos_fst) * forall p, P (pos_nxt p))%type
end.
Let pos_invert n : forall (P : pos n -> Type), pos_invert_t P -> forall p, P p.
Proof.
intros P HP; induction p; simpl in HP; apply HP.
Defined.
Theorem pos_O_invert X : pos 0 -> X.
Proof.
apply pos_invert; simpl; trivial.
Defined.
Theorem pos_S_invert n P : P (@pos_fst n) -> (forall p, P (pos_nxt p)) -> forall p, P p.
Proof.
intros; apply pos_invert; split; auto.
Defined.
End pos_invert.
Arguments pos_S_invert [n] P _ _ p /.
Ltac pos_O_inv p := exfalso; apply (pos_O_inv p).
Ltac pos_S_inv p :=
let H := fresh in
let q := fresh
in rename p into q; destruct (pos_S_inv q) as [ H | (p & H) ]; subst q.
(*
Ltac pos_O_inv p := apply (@pos_O_invert _ p).
Ltac pos_S_inv x := induction x as | x using pos_S_invert.
*)
Ltac pos_inv p :=
match goal with
| [ H: pos 0 |- _ ] => match H with p => pos_O_inv p end
| [ H: pos (S _) |- _ ] => match H with p => pos_S_inv p end
end.
Tactic Notation "invert" "pos" hyp(H) := pos_inv H; simpl.
Ltac analyse_pos p :=
match type of p with
| pos 0 => pos_inv p
| pos (S _) => pos_inv p; [ | try analyse_pos p ]
end.
Tactic Notation "analyse" "pos" hyp(p) := analyse_pos p.
Definition pos_O_any X : pos 0 -> X.
Proof. intro p; invert pos p. Qed.
Fixpoint pos_left n m (p : pos n) : pos (n+m) :=
match p with
| pos_fst => pos_fst
| pos_nxt p => pos_nxt (pos_left m p)
end.
Fixpoint pos_right n m : pos m -> pos (n+m) :=
match n with
| 0 => fun x => x
| S n => fun p => pos_nxt (pos_right n p)
end.
Definition pos_both n m : pos (n+m) -> pos n + pos m.
Proof.
induction n as [ | n IHn ]; intros p.
+ right; exact p.
+ simpl in p; pos_inv p.
* left; apply pos_fst.
* destruct (IHn p) as [ a | b ].
- left; apply (pos_nxt a).
- right; apply b.
Defined.
Definition pos_lr n m : pos n + pos m -> pos (n+m).
Proof.
intros [ p | p ]; revert p.
+ apply pos_left.
+ apply pos_right.
Defined.
Fact pos_both_left n m p : @pos_both n m (@pos_left n m p) = inl p.
Proof.
induction p as [ | n p IHp ]; simpl; auto.
rewrite IHp; auto.
Qed.
Fact pos_both_right n m p : @pos_both n m (@pos_right n m p) = inr p.
Proof.
revert p; induction n as [ | n IHn]; intros p; simpl; auto.
rewrite IHn; auto.
Qed.
A bijection between pos n + pos m <-> pos (n+m)
Fact pos_both_lr n m p : @pos_both n m (pos_lr p) = p.
Proof.
destruct p as [ p | p ].
+ apply pos_both_left.
+ apply pos_both_right.
Qed.
Fact pos_lr_both n m p : pos_lr (@pos_both n m p) = p.
Proof.
revert p; induction n as [ | n IHn ]; intros p; auto.
simpl in p; pos_inv p; simpl; auto.
specialize (IHn p).
destruct (pos_both n m p); simpl in *; f_equal; auto.
Qed.
Section pos_left_right_rect.
Variable (n m : nat) (P : pos (n+m) -> Type).
Hypothesis (HP1 : forall p, P (pos_left _ p))
(HP2 : forall p, P (pos_right _ p)).
Theorem pos_left_right_rect : forall p, P p.
Proof.
intros p.
rewrite <- pos_lr_both.
generalize (pos_both n m p); clear p; intros [|]; simpl; auto.
Qed.
End pos_left_right_rect.
Fixpoint pos_list n : list (pos n) :=
match n with
| 0 => nil
| S n => pos0::map pos_nxt (pos_list n)
end.
Fact pos_list_prop n p : In p (pos_list n).
Proof.
induction p as [ | n p Hp ].
left; auto.
simpl; right.
apply in_map_iff.
exists p; auto.
Qed.
Fact pos_list_length n : length (pos_list n) = n.
Proof.
induction n; simpl; auto.
rewrite map_length; f_equal; auto.
Qed.
Fact pos_reification X n (R : pos n -> X -> Prop) : (forall p, exists x, R p x) -> exists f, forall p, R p (f p).
Proof.
revert R; induction n as [ | n IHn ]; intros R HR.
exists (pos_O_any X); intros p; invert pos p.
set (R' q x := R (pos_nxt q) x).
destruct (IHn R') as (f & Hf).
intros p; apply HR.
unfold R' in Hf.
destruct (HR pos_fst) as (x & Hx).
exists (fun p => match pos_S_inv p with inl _ => x | inr (exist _ q _) => f q end).
intros p; invert pos p; auto.
Qed.
Fact pos_reif_t X n (R : pos n -> X -> Prop) : (forall p, { x | R p x }) -> { f | forall p, R p (f p) }.
Proof.
intros H.
exists (fun p => (proj1_sig (H p))).
intros; apply (proj2_sig (H p)).
Qed.
Section pos_eq_dec.
Definition pos_eq_dec n (x y : pos n) : { x = y } + { x <> y }.
Proof.
revert n x y.
induction x as [ x | n x IH ]; intros y; invert pos y.
left; trivial.
right; discriminate.
right; discriminate.
destruct (IH y) as [ | C ].
left; subst; trivial.
right; contradict C; revert C; apply pos_nxt_inj.
Defined.
End pos_eq_dec.
Section pos_map.
Definition pos_map m n := pos m -> pos n.
Definition pm_ext_eq m n (r1 r2 : pos_map m n) := forall p, r1 p = r2 p.
Definition pm_lift m n (r : pos_map m n) : pos_map (S m) (S n).
Proof.
intros p.
invert pos p.
apply pos_fst.
apply pos_nxt, (r p).
Defined.
Fact pm_lift_fst m n (r : pos_map m n) : pm_lift r pos0 = pos0.
Proof. auto. Qed.
Fact pm_lift_nxt m n (r : pos_map m n) p : pm_lift r (pos_nxt p) = pos_nxt (r p).
Proof. auto. Qed.
Arguments pm_lift [ m n ] r p.
Fact pm_lift_ext m n r1 r2 : @pm_ext_eq m n r1 r2 -> pm_ext_eq (pm_lift r1) (pm_lift r2).
Proof.
intros H12 p; unfold pm_lift.
invert pos p; simpl; auto.
f_equal; apply H12.
Qed.
Definition pm_comp l m n : pos_map l m -> pos_map m n -> pos_map l n.
Proof.
intros H1 H2 p.
exact (H2 (H1 p)).
Defined.
Fact pm_comp_lift l m n r s : pm_ext_eq (pm_lift (@pm_comp l m n r s)) (pm_comp (pm_lift r) (pm_lift s)).
Proof.
intros p.
unfold pm_comp, pm_lift; simpl.
invert pos p; simpl; auto.
Qed.
Definition pm_id n : pos_map n n := fun p => p.
End pos_map.
Arguments pm_lift { m n } _ _ /.
Arguments pm_comp [ l m n ] _ _ _ /.
Arguments pm_id : clear implicits.
Section pos_nat.
Fixpoint pos_nat n (p : pos n) : { i | i < n }.
Proof.
refine (match p with
| pos_fst => exist _ 0 _
| pos_nxt q => exist _ (S (proj1_sig (pos_nat _ q))) _
end).
apply lt_O_Sn.
apply lt_n_S, (proj2_sig (pos_nat _ q)).
Defined.
Definition pos2nat n p := proj1_sig (@pos_nat n p).
Fact pos2nat_prop n p : @pos2nat n p < n.
Proof. apply (proj2_sig (pos_nat p)). Qed.
Fixpoint nat2pos n : forall x, x < n -> pos n.
Proof.
refine (match n as n' return forall x, x < n' -> pos n' with
| O => fun x H => _
| S i => fun x H => _
end).
exfalso; revert H; apply lt_n_O.
destruct x as [ | x ].
apply pos_fst.
apply pos_nxt.
apply (nat2pos i x); revert H; apply lt_S_n.
Defined.
Definition nat_pos n : { i | i < n } -> pos n.
Proof. intros (? & H); revert H; apply nat2pos. Defined.
Arguments pos2nat n !p /.
Fact pos2nat_inj n (p q : pos n) : pos2nat p = pos2nat q -> p = q.
Proof.
revert q.
induction p as [ n | n p IHp ]; intros q; invert pos q; simpl; auto; try discriminate 1.
intros H; f_equal; apply IHp; injection H; trivial.
Qed.
Fact pos2nat_nat2pos n i (H : i < n) : pos2nat (nat2pos H) = i.
Proof.
revert i H;
induction n as [ | n IHn ]; intros [ | i ] H; simpl; auto; try omega.
f_equal.
apply IHn.
Qed.
Fact nat2pos_pos2nat n p (H : pos2nat p < n) : nat2pos H = p.
Proof.
apply pos2nat_inj; rewrite pos2nat_nat2pos; auto.
Qed.
Fact pos2nat_fst n : pos2nat (@pos_fst n) = 0.
Proof. auto. Qed.
Fact pos2nat_nxt n p : pos2nat (@pos_nxt n p) = S (pos2nat p).
Proof. auto. Qed.
Fact pos2nat_left n m p : pos2nat (@pos_left n m p) = pos2nat p.
Proof. induction p; simpl; auto. Qed.
Fact pos2nat_right n m p : pos2nat (@pos_right n m p) = n+pos2nat p.
Proof.
revert m p; induction n as [ | n IHn ]; intros m p; auto.
simpl pos_right; simpl plus; rewrite pos2nat_nxt; f_equal; auto.
Qed.
Fixpoint pos_sub n (p : pos n) { struct p } : forall m, n < m -> pos m.
Proof.
destruct p as [ | n p ]; intros [ | m ] Hm.
exfalso; clear pos_sub; abstract omega.
apply pos_fst.
exfalso; clear pos_sub; abstract omega.
apply pos_nxt.
apply (pos_sub n p), lt_S_n, Hm.
Defined.
Fact pos_sub2nat n p m Hm : pos2nat (@pos_sub n p m Hm) = pos2nat p.
Proof.
revert m Hm; induction p as [ n | n p IH ]; intros [ | m ] Hm; try omega.
simpl; auto.
simpl pos_sub; repeat rewrite pos2nat_nxt; f_equal; auto.
Qed.
End pos_nat.
Global Opaque pos_nat.
Fact pos_list2nat n : map (@pos2nat n) (pos_list n) = list_an 0 n.
Proof.
induction n as [ | n IHn ]; simpl; f_equal.
rewrite <- (map_S_list_an 0), <- IHn.
do 2 rewrite map_map.
apply map_ext.
intros; rewrite pos2nat_nxt; auto.
Qed.
Section pos_prod.
Variable n : nat.
Let ll := flat_map (fun p => map (fun q => (p,q)) (pos_list n)) (pos_list n).
Let ll_prop p q : In (p,q) ll.
Proof.
apply in_flat_map; exists p; split.
apply pos_list_prop.
apply in_map_iff.
exists q; split; auto.
apply pos_list_prop.
Qed.
Definition pos_not_diag := filter (fun c => if pos_eq_dec (fst c) (snd c) then false else true) ll.
Fact pos_not_diag_spec p q : In (p,q) pos_not_diag <-> p <> q.
Proof.
unfold pos_not_diag.
rewrite filter_In; simpl.
destruct (pos_eq_dec p q).
split.
intros (_ & ?); discriminate.
intros []; auto.
split; try tauto; split; auto.
Qed.
End pos_prod.