Taken from coq-bigO / Armaël Guéneau
Require Import Coq.Lists.List.
Import List.ListNotations.
From smpl Require Import Smpl.

Local Set Universe Polymorphism.

Module UnivPolyList.

  Local Inductive UPlist (A : Type) : Type :=
  | nil : UPlist A
  | cons : A -> UPlist A -> UPlist A.

  Arguments nil {A}.
  Arguments cons {A} a l.
End UnivPolyList.

Import UnivPolyList.

Definition toUPList := fun X l => List.fold_left (fun xs x => @cons X x xs) l nil.
Global Coercion toUPList : list >-> UPlist.

Module UnivPolyListNotations.
  Infix "::" := cons (at level 60, right associativity) : uplist_scope.
  Notation "[ ]" := nil (format "[ ]") : uplist_scope.
  Notation "[ x ]" := (cons x nil) : uplist_scope.
  Notation "[ x ; y ; .. ; z ]" := (cons x (cons y .. (cons z nil) ..)): uplist_scope.

  Delimit Scope uplist_scope with uplist.
  Bind Scope uplist_scope with UPlist.
End UnivPolyListNotations.

Import UnivPolyListNotations.
Open Scope uplist_scope.

Fixpoint Rarrow (domain : UPlist Type) (range : Type) : Type :=
  match domain with
    | nil => range
    | d :: ds => Rarrow ds (d -> range)
end.

Fixpoint Rtuple (domain : UPlist Type) : Type :=
  match domain with
  | nil => unit
  | d :: nil => d
  | d :: ds => prod (Rtuple ds) d
  end.

Fixpoint Const {A : Type} (domain : UPlist Type) (c : A) : Rarrow domain A :=
  match domain with
  | nil => c
  | d :: ds => Const ds (fun _ => c)
  end.

Lemma Const_eqn_1 : forall A (c : A),
  Const [] c = c.
Proof. intros. reflexivity. Qed.

Lemma Const_eqn_2 : forall A d ds (c : A),
  Const (d :: ds) c = Const ds (fun _ => c).
Proof. intros. reflexivity. Qed.

Hint Rewrite Const_eqn_1 : Const.
Hint Rewrite Const_eqn_2 : Const.
Opaque Const.

Fixpoint Fun' {domain : UPlist Type} {range : Type} {struct domain}
         : (Rtuple domain -> range) -> (Rtuple domain) -> range
  :=
  match domain with
  | nil => fun body t => body tt
  | d :: ds =>
     let f := @Fun' ds range in
     match ds return
        ((Rtuple ds -> range) -> Rtuple ds -> range) ->
        ((Rtuple (d :: ds) -> range) -> Rtuple (d :: ds) -> range)
     with
     | [] => fun _ body t => body t
     | _ =>
         fun f body t =>
         let '(t', x) := t in f (fun p' => body (p', x)) t'
     end f
  end.

Lemma Fun'_eqn_1 : forall range body,
  @Fun' [] range body = (fun _ => body tt).
Proof. intros. reflexivity. Qed.

Lemma Fun'_eqn_2 : forall d range body,
  @Fun' [d] range body = body.
Proof. intros. reflexivity. Qed.

Lemma Fun'_eqn_3 : forall d d' ds range body,
  @Fun' (d :: d' :: ds) range body =
  (fun '(t', x) => @Fun' (d' :: ds) range (fun p' => body (p', x)) t').
Proof. intros. reflexivity. Qed.

Hint Rewrite Fun'_eqn_1 : Fun'.
Hint Rewrite Fun'_eqn_2 : Fun'.
Hint Rewrite Fun'_eqn_3 : Fun'.
Opaque Fun'.

Fixpoint App {domain : UPlist Type} {range : Type} {struct domain}
         : (Rarrow domain range) -> Rtuple domain -> range
  :=
  match domain with
  | nil => fun f x => f
  | d :: ds =>
    let Apprec := @App ds (d -> range) in
    match ds return
      ((Rarrow ds (d -> range)) -> Rtuple ds -> d -> range) ->
      (Rarrow (d :: ds) range) -> Rtuple (d :: ds) -> range
    with
    | [] => fun _ f x => f x
    | _ => fun Apprec f t => Apprec f (fst t) (snd t)
    end Apprec
  end.

Lemma App_eqn_1 : forall range f x,
  @App [] range f x = f.
Proof. intros. reflexivity. Qed.

Lemma App_eqn_2 : forall d range f x,
  @App [d] range f x = f x.
Proof. intros. reflexivity. Qed.

Lemma App_eqn_3 : forall d d' ds range f x,
  @App (d :: d' :: ds) range f x = @App (d' :: ds) (d -> range) f (fst x) (snd x).
Proof. intros. reflexivity. Qed.

Hint Rewrite App_eqn_1 : App.
Hint Rewrite App_eqn_2 : App.
Hint Rewrite App_eqn_3 : App.
Opaque App.

Lemma Fun'_simpl : forall domain range body t,
  @Fun' domain range body t = body t.
Proof.
  intro. induction domain; intros; autorewrite with Fun'.
  - destruct t. reflexivity.
  - destruct domain; autorewrite with Fun'.
    + reflexivity.
    + destruct t. apply IHdomain.
Qed.

Tactic Notation "_rewrite_anywhere" uconstr(L):=
  match goal with
  | H : _ |- _ => setoid_rewrite L in H
  | _ => setoid_rewrite L
  end.

Smpl Create generic.
Smpl Add 2 _rewrite_anywhere Fun'_simpl : generic.

Lemma App_Const_simpl :
  forall domain range c x,
  @App domain range (Const domain c) x = c.
Proof.
  intro. induction domain; intros; autorewrite with App.
  - reflexivity.
  - destruct domain; autorewrite with App.
    + reflexivity.
    + destruct x. simpl. rewrite Const_eqn_2.
      rewrite IHdomain. reflexivity.
Qed.
Smpl Add 2 _rewrite_anywhere App_Const_simpl : generic.

Definition Const' (domain : UPlist Type) {range : Type}
           (cst : range) : Rtuple domain -> range :=
  Fun' (App (Const domain cst)).

Hint Unfold Const' : generic.

Definition Uncurry {domain : UPlist Type} {range : Type}
           (f : Rarrow domain range) : Rtuple domain -> range :=
  Fun' (App f).

Hint Unfold Uncurry : generic.


Smpl Create nary_prepare.

Ltac rew_generic_in_all := autounfold with generic in *;repeat smpl nary_prepare;repeat smpl generic.

Tactic Notation "prove_nary" uconstr(L) :=
  intros; rew_generic_in_all; eapply L; eauto.


Inductive Domain_goal_hint (G : Type) := Mk_domain_goal_hint : Domain_goal_hint G.
Record Domain_of_goal := Mk_domain_of_goal {
  Domain_of_goal_domain_ty : Type ;
  Domain_of_goal_domain : Domain_of_goal_domain_ty ;
 }.

Arguments Mk_domain_of_goal [Domain_of_goal_domain_ty].

Ltac mk_domain_getter tac :=
  match goal with
  | H : Domain_goal_hint ?G |- Domain_of_goal => tac G
  end.

Ltac get_domain :=
  match goal with |- ?G =>
    let packed_dom := constr:(ltac:(
                         pose proof (Mk_domain_goal_hint G);
                         typeclasses eauto with domain_of_goal
                       ) : Domain_of_goal)
    in
    let dom := constr:(Domain_of_goal_domain packed_dom) in
    let dom := eval cbv in dom in
    dom
  end.

Ltac simpl_apply app t :=
  let H := fresh in
  pose proof t as H;
  autounfold with generic in H;
  cbn in H;
  app H;
  clear H.

Ltac _nary_apply t L :=
  let D := get_domain in
  simpl_apply t (L D).

Tactic Notation "nary" "apply" uconstr(L) := _nary_apply ltac:(fun t => apply t) L.

Tactic Notation "nary" "simple" "apply" uconstr(L) := _nary_apply ltac:(fun t => simple apply t) L.

Ltac UPlist_of_tuple ty :=
  lazymatch ty with
  | prod ?A ?B =>
    let l := UPlist_of_tuple A in
    constr:(cons (B:Type) l)
  | _ => constr:(cons (ty:Type) nil)
  end.