Instance le_preorder : PreOrder le.
Proof.
constructor. all:cbv. all:intros;omega.
Qed.
Instance S_le_proper : Proper (le ==> le) S.
Proof.
cbv. fold plus. intros. omega.
Qed.
Instance plus_le_proper : Proper (le ==> le ==> le) plus.
Proof.
cbv. fold plus. intros. omega.
Qed.
Instance mult_le_proper : Proper (le ==> le ==> le) mult.
Proof.
cbv. intros.
apply mult_le_compat. all:eauto.
Qed.
Instance max_le_proper : Proper (le ==> le ==> le) max.
repeat intro. repeat eapply Nat.max_case_strong;omega.
Qed.
Instance min_le_proper : Proper (le ==> le ==> le) min.
repeat intro. repeat eapply Nat.min_case_strong;omega.
Qed.
Instance Nat_log2_le_Proper : Proper (le ==> le) Nat.log2.
Proof.
repeat intro. apply Nat.log2_le_mono. assumption.
Qed.
Instance Pos_to_nat_le_Proper : Proper (Pos.le ==> le) Pos.to_nat.
Proof.
repeat intro. apply Pos2Nat.inj_le. assumption.
Qed.
Instance Pos_add_le_Proper : Proper (Pos.le ==> Pos.le ==>Pos.le) Pos.add.
Proof.
repeat intro. eapply Pos.add_le_mono. 3:eauto. all:eauto.
Qed.
Lemma nth_error_Some_lt A (H:list A) a x : nth_error H a = Some x -> a < |H|.
Proof.
intros eq. revert H eq. induction a;intros;destruct H;cbn in *;inv eq. omega. apply IHa in H1. omega.
Qed.
Definition maxP (P:nat -> Prop) m := P m /\ (forall m', P m' -> m' <= m).
Lemma sumn_le_bound l c :
(forall n, n el l -> n <= c) -> sumn l <= length l * c.
Proof.
induction l;cbn. easy.
intros H.
rewrite <- IHl,<- H. all:now eauto.
Qed.
Lemma sumn_map_le_pointwise X (xs:list X) f1 f2:
(forall x, x el xs -> f1 x <= f2 x) -> sumn (map f1 xs) <= sumn (map f2 xs).
Proof.
intros Hle.
induction xs. easy.
cbn. rewrite Hle. 2:easy. rewrite IHxs. easy. intros. eauto.
Qed.