From Undecidability.L Require Import L.
Require Import ListTactics.
From Undecidability.L.Tactics Require Import Lproc Reflection.
Require Import ListTactics.
From Undecidability.L.Tactics Require Import Lproc Reflection.
Lbeta: symbolic beta reduction
Lemma eval_helper s t u: s >* u -> eval u t -> eval s t.
intros R H. now rewrite R.
Defined.
Ltac addToList a l := AddFvTail a l.
Ltac has_no_evar s := try (has_evar s;fail 1).
Ltac reflexivity' :=
match goal with
| |- ?G => has_no_evar G;reflexivity
end.
Lemma evalIn_refl n s : proc s -> s ⇓(<=n) s.
Proof.
intros. split.
-exists 0;split.
+omega.
+reflexivity.
-Lproc.
Defined.
Lemma eval_refl s : lambda s -> s ⇓ s.
Proof.
intros. split. reflexivity. Lproc.
Defined.
Ltac allVarsPrep _s :=
lazymatch _s with
| var ?_n => idtac
| app ?_s ?_t =>
allVarsPrep _s;
allVarsPrep _t
| lam ?_s => allVarsPrep _s
| rho ?_s => allVarsPrep _s
| _ => let x := fresh "__x" in set (x:= _s)
end.
Ltac allVarsSubstL vars :=
lazymatch eval hnf in vars with
| [] => idtac
| ?x::?vars'' => allVarsSubstL vars'';try subst x
end.
Ltac allVars' vars _s :=
lazymatch _s with
| var ?_n => vars
| app ?_s ?_t =>
let vars := allVars' vars _s in
allVars' vars _t
| lam ?_s => allVars' vars _s
| rho ?_s => allVars' vars _s
| _ => addToList (_s:term) vars
end.
Ltac allVars _s := allVars' (@nil term) _s.
Ltac Find_at' a l :=
lazymatch l with
| (cons a _) => constr:(0)
| (cons _ ?l) =>
let n := Find_at' a l in
constr:(S n)
end.
Ltac reifyTerm vars _s :=
lazymatch _s with
| var ?_n => constr:(rVar _n)
| app ?_s ?_t =>
let _s := reifyTerm vars _s in
let _t := reifyTerm vars _t in
constr:(rApp _s _t)
| lam ?_s =>
let _s := reifyTerm vars _s in
constr:(rLam _s)
| rho ?_s =>
let _s := reifyTerm vars _s in
constr:(rRho _s)
| _ =>
let vars' := eval hnf in vars in
let _n := (Find_at' (_s:term) vars') in
constr:(rConst (_n))
end.
Ltac vm_hypo :=
match goal with
| H: ?s == ?t |- _ => revert H;try vm_hypo;intros H; vm_compute in H
end.
Ltac ProcPhi' vars H := let eq := fresh "eq" in (exfalso;exact H) || (destruct H as [eq|H];[rewrite <-eq;repeat allVarsSubstL vars;Lproc|ProcPhi' vars H]).
Ltac ProcPhi vars :=
let H := fresh "H" in
let s := fresh "s" in
apply liftPhi_correct;intros s H;ProcPhi' vars H.
Ltac simplify_L' n:=
lazymatch goal with
|- ?s >(_) _ =>
allVarsPrep s;
lazymatch goal with
|- ?s >(_) _ =>
let vars:= allVars s in
let vars' := fresh "vars'" in
pose (vars':=vars);
let s' := reifyTerm vars s in
let phi := fresh "phi" in
pose (phi := Reflection.liftPhi vars);
let pp := fresh "pp" in
let cs := fresh "cs" in
assert (pp:Reflection.Proc phi) by (ProcPhi vars');
assert (cs :Reflection.rClosed phi s') by (apply Reflection.rClosed_decb_correct;[exact pp|vm_compute;reflexivity]);
let R := fresh "R" in
assert (R:= Reflection.rStandardizeUsePow n pp cs);
let eq := fresh "eq" in
let s'' := fresh "s''" in
remember ( Reflection.rCompSeval n (0, Reflection.rCompClos (s') [])) as s'' eqn:eq in R;
vm_compute in eq;
rewrite eq in R; lazy -[rho pow phi Reflection.liftPhi] in R;
lazy [phi Reflection.liftPhi nth] in R;
clear vars' eq s'' cs phi pp; exact R
end
end.
Lemma pow_trans_eq: forall (s t u : term) (i j k: nat), s >(i) t -> t >(j) u -> i+j=k -> s >(k) u.
intros. subst. eapply pow_trans;eauto.
Qed.
Ltac Lreflexivity :=
lazymatch goal with
| |- _ ⇓(<=_) _ => solve [apply (@evalIn_refl 0);Lproc | apply evalIn_refl;Lproc ]
| |- _ >(<= _ ) _ => apply redLe_refl
| |- _ ⇓(?i) _ => unify i 0;split;[reflexivity|Lproc]
| |- _ ⇓ _ => solve [apply eval_refl;Lproc]
| |- _ >* _ => reflexivity
| |- _ >(_) _ => now apply pow0_refl
| |- ?t => fail "not supported by Lreflexivity:" t
end.
Ltac Lbeta' n :=
lazymatch goal with
|- ?rel ?s _ =>
lazymatch goal with
| |- _ >(?i) _ => tryif is_evar i
then eapply pow_trans;[simplify_L' n|]
else (eapply pow_trans_eq;[simplify_L' n| |try reflexivity])
| |- _ >(<=?i) _ => tryif is_evar i
then eapply redLe_trans;[apply pow_redLe_subrelation;simplify_L' n|]
else ((eapply redLe_trans_eq;[ | apply pow_redLe_subrelation;simplify_L' n| ]);[try reflexivity | ..])
| |- _ ⇓(<= _) _ => eapply evalLe_trans;[apply pow_redLe_subrelation;simplify_L' n|]
| |- _ ⇓(_) _ => eapply evalIn_trans;[Lbeta' n|]
| |- _ ⇓ _ => eapply eval_helper;[eapply pow_star_subrelation;simplify_L' n|]
| |- _ >* _ => etransitivity;[eapply pow_star_subrelation;simplify_L' n|]
| |- ?G => fail "Not supported for LSimpl (or other failed):" G
end;
lazymatch goal with
|- ?rel s _ => fail "No Progress (progress in indexes are not currently noticed...)"
| |- _ => idtac
end
end.
Tactic Notation "Lbeta" := once(Lbeta' 50).
Tactic Notation "standardize" ident(R) constr(n) constr(s) :=
is_ground s;
let l := fresh "l" in
let t := fresh "t" in
evar (l : nat);
evar (t : term);
assert (R : s >(l) t) by simplify_L' n;subst l t;apply pow_star in R.
Goal I I >* I.
Proof.
standardize R 100 ((lam 0) (lam 0)); exact R.
Qed.
Ltac standardizeGoal' _n:=
let R:= fresh "R" in
lazymatch goal with
| |- ?s == _ => let R:= fresh "R" in standardize R _n s;try (etransitivity;[exact (star_equiv R)|];clear R)
| |- ?s >* _ => let R:= fresh "R" in standardize R _n s;try (etransitivity;[exact R|];clear R)
end.
Ltac standardizeGoal _n :=
try progress Lbeta' _n;
try progress standardizeGoal' _n;
try progress (symmetry;standardizeGoal' _n;symmetry).
Lemma stHypo s s' t : s >* s' -> s == t -> s' == t.
Proof.
intros R R'. rewrite R in R'. exact R'.
Qed.
Ltac standardizeHypo _n:=
match goal with
| eq_new_name : ?s == ?t |- _=>
revert eq_new_name;try standardizeHypo _n; intros eq_new_name;
try (progress (let R:= fresh "R" in
standardize R _n s;apply (stHypo R) in eq_new_name;clear R ));
try (progress (let R':= fresh "R'" in
symmetry;standardize R' _n s;
apply (stHypo R') in eq_new_name;symmetry;clear R' ))
end.