Definition is_cons X (l : list X) :=
match l with
| [] => false
| _ => true
end.
Lemma is_cons_true_iff X (l : list X) :
is_cons l = true <-> l <> [].
Proof.
destruct l; cbn; firstorder congruence.
Qed.
Section MPCP_PCP.
Variable R : SRS.
Variable x0 y0 : string.
Definition Sigma := sym (x0/y0 :: R).
Definition R_Sigma : sym R <<= Sigma.
Proof. unfold Sigma. cbn. eauto. Qed.
Definition dollar := fresh Sigma.
Notation "$" := dollar.
Definition hash := fresh (dollar :: Sigma).
Notation "#" := hash.
Fixpoint hash_l (x : string) :=
match x with
| [] => []
| a :: x => # :: a :: hash_l x
end.
Notation "#_L" := hash_l.
Fixpoint hash_r (x : string) :=
match x with
| [] => []
| a :: x => a :: # :: hash_r x
end.
Notation "#_R" := hash_r.
Definition d := ($ :: (#_L x0)) / ($ :: # :: (#_R y0)).
Definition e := [#;$] / [$].
Definition P := [d;e] ++ map (fun '(x,y) => (#_L x, #_R y)) (filter (fun '(x,y) => is_cons x || is_cons y) (x0/y0::R)).
Lemma P_inv c :
c el P ->
c = d \/ c = e \/ (exists x y, (x,y) el (x0/y0 :: R) /\ c = (#_L x, #_R y) /\ ( (x,y) <> (nil, nil))).
Proof.
cbn -[filter]. intros. firstorder. eapply in_map_iff in H as ((x,y) & <- & (? & ? % orb_prop) % filter_In).
rewrite !is_cons_true_iff in H1.
right. right. exists x, y. firstorder; destruct x, y; cbn; firstorder congruence.
Qed.
Lemma P_inv_top x y a :
a el Sigma ->
~(a :: x,y) el P.
Proof.
intros ? [ | [ | (x'' & y' & ? & ? & ?) ] ] % P_inv.
- inv H0. edestruct fresh_spec; eauto.
- inv H0. edestruct fresh_spec with (l := dollar :: Sigma); [ | reflexivity]. firstorder.
- inv H1. destruct x''; cbn -[fresh] in *; [congruence | ]. inversion H4.
edestruct fresh_spec with (l := dollar :: Sigma); [ | reflexivity ]. unfold hash in *.
rewrite <- H3. firstorder.
Qed.
Lemma tau1_inv (a : nat) B z :
tau1 B = a :: z ->
exists x y, (a :: x, y) el B.
Proof.
induction B; cbn; intros; inv H.
destruct a0 as ([],y).
- cbn in H1. firstorder.
- cbn in H1. inv H1. eauto.
Qed.
Lemma P_inv_bot x y :
~(y, # :: x) el P.
Proof.
intros [ | [ | (x'' & y' & ? & ? & ?) ] ] % P_inv.
- inv H. edestruct fresh_spec; eauto. eauto.
- inv H. edestruct fresh_spec; eauto. eauto.
- inv H0. destruct y'; cbn -[fresh] in *; [congruence | ]. inversion H4.
edestruct fresh_spec with (l := dollar :: Sigma); [ | reflexivity ]. unfold hash in *.
rewrite H2. right. eapply sym_word_R; eauto.
Qed.
Lemma tau2_inv (a : nat) B z :
tau2 B = a :: z ->
exists x y, (y, a :: x) el B.
Proof.
induction B; cbn; intros; inv H.
destruct a0 as (x,[]).
- cbn in H1. firstorder.
- cbn in H1. inv H1. eauto.
Qed.
Lemma match_start d' B :
d' :: B <<= P -> tau1 (d' :: B) = tau2 (d' :: B) -> d' = d.
Proof.
intros Hs Hm.
assert (d' el P) as [ -> | [ -> | (x & y & ? & -> & ?) ] ] % P_inv by now eapply Hs; cbn -[fresh] in Hm.
- congruence.
- inv Hm. now edestruct fresh_spec; eauto.
- cbn in Hm. destruct x, y; try firstorder congruence.
+ destruct (tau1_inv Hm) as (x' & y' & ? ).
assert ( (n :: x') / y' el P) as [] % P_inv_top by firstorder.
eapply sym_word_R; eauto.
+ cbn -[fresh] in Hm. symmetry in Hm. destruct (tau2_inv Hm) as (x' & y' & ? ).
assert ( y' / (# :: x') el P) as [] % P_inv_bot by firstorder.
+ cbn -[fresh] in Hm. inversion Hm. edestruct fresh_spec; eauto. right.
eapply sym_word_R in H. firstorder.
Qed.
Lemma hash_swap x :
#_L x ++ [#] = # :: #_R x.
Proof.
induction x; cbn in *; now try rewrite IHx.
Qed.
Lemma hash_L_app x y :
#_L (x ++ y) = #_L x ++ #_L y.
Proof.
induction x; cbn in *; now try rewrite IHx.
Qed.
Lemma hash_R_app x y :
#_R (x ++ y) = #_R x ++ #_R y.
Proof.
induction x; cbn in *; now try rewrite IHx.
Qed.
Lemma hash_L_diff x y :
#_L x <> # :: #_R y.
Proof.
revert y. induction x; cbn -[fresh]; intros ? ?; inv H.
destruct y; inv H1. firstorder.
Qed.
Lemma hash_R_inv x y :
#_R x = #_R y -> x = y.
Proof.
revert y; induction x; intros [] H; inv H; firstorder congruence.
Qed.
Lemma doll_hash_L x:
x <<= Sigma -> ~ $ el #_L x.
Proof.
induction x; intros.
-- firstorder.
-- intros [ | []].
++ now eapply fresh_spec in H0 as [].
++ symmetry in H0. eapply fresh_spec in H0 as []. firstorder.
++ firstorder.
Qed.
Lemma MPCP_PCP x y A :
A <<= x0/y0 :: R -> x ++ tau1 A = y ++ tau2 A ->
exists B, B <<= P /\ (#_L x) ++ tau1 B = # :: #_R y ++ tau2 B.
Proof.
revert x y; induction A; cbn -[fresh P] in *; intros.
- rewrite !app_nil_r in H0. subst. exists [e]. firstorder.
cbn -[fresh].
enough ((#_L y ++ [#]) ++ [$] = # :: #_R y ++ [$]) by now autorewrite with list in *.
now rewrite hash_swap.
- destruct a as (x', y').
assert ( (x ++ x') ++ tau1 A = (y ++ y') ++ tau2 A) by now simpl_list.
eapply IHA in H1 as (B & ? & ?) ; [ | firstorder].
rewrite hash_L_app, hash_R_app in H2.
autorewrite with list in H2.
destruct (is_cons x' || is_cons y') eqn:E.
+ exists ( (#_L x' / #_R y') :: B). split.
* intros ? [ <- | ]; [ | eauto].
unfold P. rewrite in_app_iff, in_map_iff. right. exists (x', y'). eauto.
* eassumption.
+ exists B. rewrite orb_false_iff, <- !not_true_iff_false, !is_cons_true_iff in E. destruct E.
destruct x', y'; firstorder congruence.
Qed.
Lemma PCP_MPCP x y B :
B <<= P -> x <<= Sigma -> y <<= Sigma ->
(#_L x) ++ tau1 B = # :: (#_R y) ++ tau2 B ->
exists A, A <<= x0/y0::R /\ x ++ tau1 A = y ++ tau2 A.
Proof.
revert x y. induction B; cbn -[fresh P] in *; intros.
- exfalso. rewrite !app_nil_r in H2. eapply hash_L_diff in H2 as [].
- assert (a el P) as [ -> | [ -> | (x' & y' & ? & -> & ?) ] ] % P_inv by intuition; cbn -[fresh P] in *.
+ exfalso. setoid_rewrite app_comm_cons in H2 at 2.
eapply list_prefix_inv in H2 as [[] % hash_L_diff E2].
* now eapply doll_hash_L.
* rewrite <- hash_swap. rewrite in_app_iff. intros [ | [ | []]]. eapply doll_hash_L; eauto.
now eapply fresh_spec in H3 as [].
+ exists []. assert ((#_L x ++ [#]) ++ $ :: tau1 B = (# :: #_R y) ++ $ :: tau2 B) by now simpl_list.
eapply list_prefix_inv in H3.
rewrite hash_swap in H3. inv H3.
inv H4. eapply hash_R_inv in H6 as ->. firstorder.
* rewrite in_app_iff. intros [ | [ | []]]. eapply doll_hash_L in H4; eauto.
now eapply fresh_spec in H4 as [].
* rewrite <- hash_swap. rewrite in_app_iff. intros [ | [ | []]]. eapply doll_hash_L; eauto.
now eapply fresh_spec in H4 as [].
+ assert ((#_L x ++ #_L x') ++ tau1 B = # :: (#_R y ++ #_R y') ++ tau2 B) by now simpl_list.
rewrite <- hash_L_app, <- hash_R_app in H5. eapply IHB in H5 as (A & ? & ?).
* exists (x' / y' :: A). intuition; try inv H7; intuition;
cbn; now autorewrite with list in *.
* eauto.
* eapply incl_app. eauto. intros ? ?. destruct H3. inv H3. eauto. eapply R_Sigma, sym_word_l; eauto.
* eapply incl_app. eauto. intros ? ?. destruct H3. inv H3. eauto. eapply R_Sigma, sym_word_R; eauto.
Qed.
Lemma MPCP_PCP_cor :
MPCP (x0/y0, R) <-> PCP P.
Proof.
split.
- intros (A & Hi & (B & HiB & H) % MPCP_PCP).
exists (d :: B). firstorder. congruence.
cbn. f_equal. now rewrite H. eassumption.
- intros ([|d' B] & Hi & He & H); firstorder.
pose proof H as -> % match_start; eauto.
cbn -[fresh] in H. inv H.
eapply PCP_MPCP in H1; cbn; eauto.
Qed.
End MPCP_PCP.
Theorem reduction :
MPCP ⪯ PCP.
Proof.
exists (fun '(x, y, R) => P R x y).
intros ((x & y) & R).
eapply MPCP_PCP_cor.
Qed.