Reification for bounded quantification


Require Import Arith Omega.

Set Implicit Arguments.

A nat indexed finite number of conjunctions

Definition fmap_reifier_t X (Q : nat -> X -> Prop) k :
             (forall i, i < k -> sig (Q i))
          -> { f : forall i, i < k -> X | forall i Hi, Q i (f i Hi) }.
Proof.
  revert Q; induction k as [ | k IHk ]; intros Q HQ.
  + assert (f : forall i, i < 0 -> X) by (intros i Hi; exfalso; revert Hi; apply Nat.nlt_0_r).
    exists f; intros i Hi; exfalso; revert Hi; apply Nat.nlt_0_r.
  + destruct (HQ 0) as (f0 & H0).
    * apply Nat.lt_0_succ.
    * destruct (IHk (fun i => Q (S i))) as (f & Hf).
      - intros; apply HQ, lt_n_S; trivial.
      - set (f' :=
        fun i => match i return i < S k -> X with
                   | 0 => fun _ => f0
                   | S j => fun Hj => f j (lt_S_n _ _ Hj)
                 end).
        exists f'; intros [ | i ] Hi; simpl; trivial.
Defined.

Definition fmap_reifier_t_default X (Q : nat -> X -> Prop) k (x : X) :
             (forall i, i < k -> sig (Q i))
          -> { f : nat -> X | forall i, i < k -> Q i (f i) }.
Proof.
  intros H.
  apply fmap_reifier_t in H.
  destruct H as (f & Hf).
  exists (fun i => match le_lt_dec k i with
                          | left _ => x
                          | right Hi => f i Hi
                        end).
  intros i Hi.
  destruct (le_lt_dec k i) as [ H1 | ]; auto.
  exfalso; revert Hi H1; apply lt_not_le.
Defined.

Given predicate P : nat -> nat -> Prop such that 1/ P x is satisfiable for any x < n
then there is a bound m such that for any x < n P x y is satisfied for some y below m

Theorem fmap_bound n P :
           (forall x, x < n -> ex (P x))
        -> exists m, forall x, x < n -> exists y, y < m /\ P x y.
Proof.
  revert P; induction n as [ | n IHn ]; intros P HP.
  + exists 0; intros; omega.
  + destruct (HP 0) as (m0 & H0); try omega.
    destruct (IHn (fun n => P (S n))) as (m1 & Hm1).
    - intros; apply HP; omega.
    - exists (1+m0+m1); intros [ | x ] Hx.
      * exists m0; split; auto; omega.
      * destruct (Hm1 x) as (y & H1 & H2); try omega.
        exists y; split; auto; omega.
Qed.

Theorem fmap_reifier_default X n (P : nat -> X -> Prop) :
           inhabited X
        -> (forall x, x < n -> ex (P x))
        -> exists f, forall x, x < n -> P x (f x).
Proof.
  intros [ u ].
  revert P; induction n as [ | n IHn ]; intros P HP.
  + exists (fun _ => u); intros; omega.
  + destruct (IHn (fun i => P (S i))) as (f & Hf).
    { intros; apply HP; omega. }
    destruct (HP 0) as (x & Hx); try omega.
    exists (fun i => match i with 0 => x | S i => f i end).
    intros [|] ?; auto; apply Hf; omega.
Qed.

Theorem fmap_reifer_bound n P :
           (forall x, x < n -> ex (P x))
        -> exists m f, forall x, x < n -> f x < m /\ P x (f x).
Proof.
  intros H.
  apply fmap_bound in H.
  destruct H as (m & Hm); exists m.
  revert Hm; apply fmap_reifier_default; auto.
Qed.


Local Notation equal_upto := (fun m (f g : nat -> nat) => forall n, n < m -> f n = g n).

Given a predicate P over nat * (nat -> nat), which is supposed to be finitary
1/ for any x, P x only takes the first p values of its argument into acounts 2/ P x is satisfiable for any value of x lower than n
then there is a bound m such that for any x, there is always a solution f to P x f which is uniformly bounded by m

Theorem fmmap_bound p n (P : nat -> (nat -> nat) -> Prop) :
             (forall x f g, equal_upto p f g -> P x f -> P x g)
          -> (forall x, x < n -> exists f, P x f)
          -> exists m, forall x, x < n -> exists f, (forall i, i < p -> f i < m) /\ P x f.
Proof.
  revert P.
  induction p as [ | p IHp ]; intros P HP H.
  + exists 1; intros x Hx.
    destruct (H _ Hx) as (f & Hf).
    exists (fun _ => 0); split; auto.
    apply (HP x f); auto.
    intros ? ?; omega.
  + set (Q x y := exists f, P x (fun i => match i with 0 => y | S i => f i end)).
    destruct (@fmap_bound n Q) as (m1 & Hm1).
    { intros x Hx.
      destruct (H _ Hx) as (f & Hf).
      exists (f 0); red.
      exists (fun i => f (S i)).
      revert Hf; apply HP.
      intros [ | i ]; auto. }
    set (R x f := exists y, y < m1 /\ P x (fun i => match i with 0 => y | S i => f i end)).
    destruct (IHp R) as (m2 & Hm2).
    { intros x f g Hfg (y & H1 & H2); exists y; split; auto.
      revert H2; apply HP; intros [ | ]; auto; intros; apply Hfg; omega. }
    { intros x Hx.
      destruct (Hm1 _ Hx) as (y & H1 & f & H2).
      exists f, y; split; auto. }
    exists (m1+m2).
    intros x Hx.
    destruct (Hm2 _ Hx) as (f & H1 & y & H2 & H3).
    eexists; split; [ | exact H3 ].
    intros [ | j ] Hj; try omega.
    specialize (H1 j); intros; omega.
Qed.

Theorem fmmap_reifer_bound p n (P : nat -> (nat -> nat) -> Prop) :
             (forall x f g, equal_upto p f g -> P x f -> P x g)
          -> (forall x, x < n -> exists f, P x f)
          -> exists m f, forall x, x < n -> (forall j, j < p -> f x j < m) /\ P x (f x).
Proof.
  intros H1 H2.
  apply fmmap_bound with (1 := H1) in H2.
  destruct H2 as (m & Hm).
  apply fmap_reifier_default in Hm; auto.
  destruct Hm as (f & Hf); exists m, f; auto.
Qed.