Iteration of binary relations


Require Import Arith Nat Omega.
From Undecidability.Shared.Libs.DLW.Utils Require Import utils_tac gcd prime binomial sums.

Set Implicit Arguments.

Section rel_iter.

  Variable (X : Type) (R : X -> X -> Prop).

  Fixpoint rel_iter n :=
    match n with
      | 0 => eq
      | S n => fun x z => exists y, R x y /\ rel_iter n y z
    end.

  Fact rel_iter_plus n m x y : rel_iter (n+m) x y <-> exists a, rel_iter n x a /\ rel_iter m a y.
  Proof.
    revert x y; induction n as [ | n IHn ]; intros x y; simpl.
    + split.
      * exists x; split; auto.
      * intros (? & ? & ?); subst; auto.
    + split.
      * intros (a & H1 & H2).
        apply IHn in H2.
        destruct H2 as (b & H2 & H3).
        exists b; split; auto; exists a; auto.
      * intros (a & (b & H1 & H2) & H3).
        exists b; split; auto.
        apply IHn; exists a; auto.
  Qed.

  Fact rel_iter_1 x y : rel_iter 1 x y <-> R x y.
  Proof.
    simpl; split.
    * intros (? & ? & ?); subst; auto.
    * exists y; auto.
  Qed.

  Fact rel_iter_S n x y : rel_iter (S n) x y <-> exists a, rel_iter n x a /\ R a y.
  Proof.
    replace (S n) with (n+1) by omega.
    rewrite rel_iter_plus.
    split; intros (a & H1 & H2); exists a; revert H1 H2;
      rewrite rel_iter_1; auto.
  Qed.

  Fact rel_iter_sequence n x y : rel_iter n x y <-> exists f, f 0 = x /\ f n = y /\ forall i, i < n -> R (f i) (f (S i)).
  Proof.
    split.
    * revert x y; induction n as [ | n IHn ]; simpl; intros x y.
      + intros; subst y; exists (fun _ => x); repeat split; auto; intros; omega.
      + intros (a & H1 & H2).
        destruct IHn with (1 := H2) as (f & H3 & H4 & H5).
        exists (fun i => match i with 0 => x | S i => f i end); repeat split; auto.
        intros [ | i ] Hi; subst; auto.
        apply H5; omega.
    * intros (f & H1 & H2 & H3); subst x y.
      induction n as [ | n IHn ].
      + simpl; auto.
      + rewrite rel_iter_S.
        exists (f n); split; auto.
  Qed.

End rel_iter.

Local Notation power := (mscal mult 1).

Definition is_digit c q i y := y < q /\ exists a b, c = (a*q+y)*power i q+b /\ b < power i q.

Fact is_digit_fun c q i x y : is_digit c q i x -> is_digit c q i y -> x = y.
Proof.
   intros (H1 & a1 & b1 & H3 & H4) (H2 & a2 & b2 & H5 & H6).
   rewrite H3 in H5.
   apply div_rem_uniq, proj1 in H5; auto; try omega.
   apply div_rem_uniq, proj2 in H5; auto; omega.
Qed.

Definition is_seq (R : nat -> nat -> Prop) c q n := forall i, i < n -> exists y y', is_digit c q i y /\ is_digit c q (1+i) y' /\ R y y'.

Section rel_iter_bound.

  Variable (R : nat -> nat -> Prop) (k : nat) (Hk1 : forall x y, R x y -> y <= k*x).

  Let Hk' : forall x y, R x y -> y <= (S k)*x.
  Proof. intros x y H; apply le_trans with (1 := Hk1 H), mult_le_compat_r; omega. Qed.

q represents a basis big enough so that all the sequence x=x0 R x1 R ... R xn = y can be encoded as the digits of c in base q
Since the growth of R is controlled by k, we can find a simple diophantine constraint on x n q such that q is big enough.

  Definition rel_iter_bound n x y := exists q c, x*power n (S k) < q /\ is_seq R c q n /\ is_digit c q 0 x /\ is_digit c q n y.

  Lemma rel_iter_bound_iter n x y : rel_iter_bound n x y -> rel_iter R n x y.
  Proof.
    revert y; induction n as [ | n IHn ]; intros y.
    * intros (q & c & H1 & H2 & H3 & H4).
      red in H2.
      rewrite power_0 in H1; auto.
      revert H3 H4; apply is_digit_fun.
    * rewrite rel_iter_S.
      intros (q & c & H1 & H2 & H3 & H4).
      assert (0 < q) as Hq.
      { revert H1; generalize (x*power (S n) (S k)); intros; omega. }
      assert (exists z, is_digit c q n z) as H6.
      { exists (rem (div c (power n q)) q).
        split.
        + apply div_rem_spec2; omega.
        + exists (div (div c (power n q)) q), (rem c (power n q)); split.
          2: apply div_rem_spec2; red; rewrite power_0_inv; omega.
          rewrite <- div_rem_spec1 with (p := q).
          apply div_rem_spec1. }
      destruct H6 as (z & H6); exists z; split.
      + apply IHn.
        exists q, c; repeat (split; auto).
        - apply le_lt_trans with (2 := H1), mult_le_compat; auto.
          simpl.
          replace (power n (S k)) with (1*power n (S k)) at 1 by omega.
          apply mult_le_compat; auto; omega.
        - intros i Hi; apply H2; omega.
      + destruct (H2 n) as (u & v & G1 & G2 & G3); auto.
        rewrite is_digit_fun with (1 := H4) (2 := G2),
                is_digit_fun with (1 := H6) (2 := G1); auto.
  Qed.

  Notation power := (mscal mult 1).
  Notation "∑" := (msum plus 0).

  Lemma rel_iter_iter_bound n x y : rel_iter R n x y -> rel_iter_bound n x y.
  Proof.
    intros H.
    apply rel_iter_sequence in H.
    destruct H as (f & H1 & H2 & H3).
    assert (forall i, i <= n -> f i <= power i (S k) * x) as Hf.
    { induction i as [ | i IHi ]; intros Hi; simpl; try omega.
      specialize (H3 _ Hi).
      apply Hk' in H3.
      apply le_trans with (1 := H3).
      rewrite power_S, <- mult_assoc.
      apply mult_le_compat; auto.
      apply IHi; omega. }
    set (q := S (x * power n (S k))).
    assert (q <> 0) as Hq by discriminate.
    assert (forall i, i <= n -> f i < q) as Hfq.
    { unfold q; intros i Hi.
      apply le_n_S, le_trans with (1 := Hf _ Hi).
      rewrite mult_comm; apply mult_le_compat; auto.
      apply power_mono; auto; omega. }
    set (c := (S n) (fun i => f i * power i q)).
    assert (forall i, i <= n -> is_digit c q i (f i)) as Hc.
    { intros i Hi; split; auto.
      + exists ( (n-i) (fun j => f (1+i+j) * power j q)),
               ( i (fun i => f i * power i q)); split.
        2: apply sum_power_lt; auto; intros; apply Hfq; omega.
        unfold c; replace (S n) with (i+S (n - i)) by omega.
        rewrite msum_plus, plus_comm; f_equal; auto.
        rewrite msum_ext with (g := fun k => power i q*(f (i+k)*power k q)).
        * rewrite sum_0n_scal_l, mult_comm; f_equal.
          rewrite msum_S, plus_comm; f_equal.
          2: simpl; rewrite Nat.mul_1_r; f_equal; omega.
          rewrite (mult_comm _ q), <- sum_0n_scal_l.
          apply msum_ext.
          intros j _.
          replace (i+S j) with (1+i+j) by omega.
          rewrite power_S; ring.
        * intros j _; rewrite power_plus; ring. }
    exists q, c; split; [ | split; [ | split ] ].
    + unfold q; auto.
    + intros i Hi; exists (f i), (f (S i)).
      split; [ | split ].
      * apply Hc; omega.
      * apply Hc; omega.
      * apply H3; auto.
    + rewrite <- H1; apply Hc; omega.
    + rewrite <- H2; apply Hc; omega.
  Qed.

  Hint Resolve rel_iter_bound_iter rel_iter_iter_bound.


  Theorem rel_iter_bound_equiv n x y : rel_iter R n x y <-> rel_iter_bound n x y.
  Proof. split; auto. Qed.

End rel_iter_bound.

Section rel_iter_seq.

  Variable (R : nat -> nat -> Prop).

q represents a basis big enough so that all the sequence x=x0 R x1 R ... R xn = y can be encoded as the digits of c in base q

  Definition rel_iter_seq n x y := exists q c, is_seq R c q n /\ is_digit c q 0 x /\ is_digit c q n y.

  Lemma rel_iter_seq_iter n x y : rel_iter_seq n x y -> rel_iter R n x y.
  Proof.
    revert y; induction n as [ | n IHn ]; intros y.
    * intros (q & c & H2 & H3 & H4).
      red in H2.
      simpl; revert H3 H4; apply is_digit_fun.
    * rewrite rel_iter_S.
      intros (q & c & H2 & H3 & H4).
      red in H2.
      assert (0 < q) as Hq.
      { destruct H3; omega. }
      assert (exists z, is_digit c q n z) as H6.
      { exists (rem (div c (power n q)) q).
        split.
        + apply div_rem_spec2; omega.
        + exists (div (div c (power n q)) q), (rem c (power n q)); split.
          2: apply div_rem_spec2; red; rewrite power_0_inv; omega.
          rewrite <- div_rem_spec1 with (p := q).
          apply div_rem_spec1. }
      destruct H6 as (z & H6); exists z; split.
      + apply IHn.
        exists q, c; msplit 2; auto.
        intros i Hi; apply H2; omega.
      + destruct (H2 n) as (u & v & G1 & G2 & G3); auto.
        rewrite is_digit_fun with (1 := H4) (2 := G2),
                is_digit_fun with (1 := H6) (2 := G1); auto.
  Qed.

  Notation power := (mscal mult 1).
  Notation "∑" := (msum plus 0).

  Lemma rel_iter_iter_seq n x y : rel_iter R n x y -> rel_iter_seq n x y.
  Proof.
    intros H.
    apply rel_iter_sequence in H.
    destruct H as (f & H1 & H2 & H3).
    assert (exists q, forall i, i <= n -> f i < q) as Hq.
    { clear H1 H2 H3.
      revert f; induction n as [ | n IHn ]; intros f.
      + exists (S (f 0)); intros [ | ] ?; omega.
      + destruct IHn with (f := fun i => (f (S i))) as (q & Hq).
        exists (1+f 0+q); intros [ | i ] Hi; try omega.
        generalize (Hq i); intros; omega. }
    destruct Hq as (q & Hfq).
    assert (q <> 0) as Hq.
    { generalize (Hfq 0); intros; omega. }
    set (c := (S n) (fun i => f i * power i q)).
    assert (forall i, i <= n -> is_digit c q i (f i)) as Hc.
    { intros i Hi; split; auto.
      + exists ( (n-i) (fun j => f (1+i+j) * power j q)),
               ( i (fun i => f i * power i q)); split.
        2: apply sum_power_lt; auto; intros; apply Hfq; omega.
        unfold c; replace (S n) with (i+S (n - i)) by omega.
        rewrite msum_plus, plus_comm; f_equal; auto.
        rewrite msum_ext with (g := fun k => power i q*(f (i+k)*power k q)).
        * rewrite sum_0n_scal_l, mult_comm; f_equal.
          rewrite msum_S, plus_comm; f_equal.
          2: simpl; rewrite Nat.mul_1_r; f_equal; omega.
          rewrite (mult_comm _ q), <- sum_0n_scal_l.
          apply msum_ext.
          intros j _.
          replace (i+S j) with (1+i+j) by omega.
          rewrite power_S; ring.
        * intros j _; rewrite power_plus; ring. }
    exists q, c; msplit 2.
    + intros i Hi; exists (f i), (f (S i)).
      split; [ | split ].
      * apply Hc; omega.
      * apply Hc; omega.
      * apply H3; auto.
    + rewrite <- H1; apply Hc; omega.
    + rewrite <- H2; apply Hc; omega.
  Qed.

  Hint Resolve rel_iter_seq_iter rel_iter_iter_seq.


  Theorem rel_iter_seq_equiv n x y : rel_iter R n x y <-> rel_iter_seq n x y.
  Proof. split; auto. Qed.

End rel_iter_seq.