Require Import Arith Nat Omega.
From Undecidability.Shared.Libs.DLW.Utils Require Import utils_tac gcd prime binomial sums.
Set Implicit Arguments.
Section rel_iter.
Variable (X : Type) (R : X -> X -> Prop).
Fixpoint rel_iter n :=
match n with
| 0 => eq
| S n => fun x z => exists y, R x y /\ rel_iter n y z
end.
Fact rel_iter_plus n m x y : rel_iter (n+m) x y <-> exists a, rel_iter n x a /\ rel_iter m a y.
Proof.
revert x y; induction n as [ | n IHn ]; intros x y; simpl.
+ split.
* exists x; split; auto.
* intros (? & ? & ?); subst; auto.
+ split.
* intros (a & H1 & H2).
apply IHn in H2.
destruct H2 as (b & H2 & H3).
exists b; split; auto; exists a; auto.
* intros (a & (b & H1 & H2) & H3).
exists b; split; auto.
apply IHn; exists a; auto.
Qed.
Fact rel_iter_1 x y : rel_iter 1 x y <-> R x y.
Proof.
simpl; split.
* intros (? & ? & ?); subst; auto.
* exists y; auto.
Qed.
Fact rel_iter_S n x y : rel_iter (S n) x y <-> exists a, rel_iter n x a /\ R a y.
Proof.
replace (S n) with (n+1) by omega.
rewrite rel_iter_plus.
split; intros (a & H1 & H2); exists a; revert H1 H2;
rewrite rel_iter_1; auto.
Qed.
Fact rel_iter_sequence n x y : rel_iter n x y <-> exists f, f 0 = x /\ f n = y /\ forall i, i < n -> R (f i) (f (S i)).
Proof.
split.
* revert x y; induction n as [ | n IHn ]; simpl; intros x y.
+ intros; subst y; exists (fun _ => x); repeat split; auto; intros; omega.
+ intros (a & H1 & H2).
destruct IHn with (1 := H2) as (f & H3 & H4 & H5).
exists (fun i => match i with 0 => x | S i => f i end); repeat split; auto.
intros [ | i ] Hi; subst; auto.
apply H5; omega.
* intros (f & H1 & H2 & H3); subst x y.
induction n as [ | n IHn ].
+ simpl; auto.
+ rewrite rel_iter_S.
exists (f n); split; auto.
Qed.
End rel_iter.
Local Notation power := (mscal mult 1).
Definition is_digit c q i y := y < q /\ exists a b, c = (a*q+y)*power i q+b /\ b < power i q.
Fact is_digit_fun c q i x y : is_digit c q i x -> is_digit c q i y -> x = y.
Proof.
intros (H1 & a1 & b1 & H3 & H4) (H2 & a2 & b2 & H5 & H6).
rewrite H3 in H5.
apply div_rem_uniq, proj1 in H5; auto; try omega.
apply div_rem_uniq, proj2 in H5; auto; omega.
Qed.
Definition is_seq (R : nat -> nat -> Prop) c q n := forall i, i < n -> exists y y', is_digit c q i y /\ is_digit c q (1+i) y' /\ R y y'.
Section rel_iter_bound.
Variable (R : nat -> nat -> Prop) (k : nat) (Hk1 : forall x y, R x y -> y <= k*x).
Let Hk' : forall x y, R x y -> y <= (S k)*x.
Proof. intros x y H; apply le_trans with (1 := Hk1 H), mult_le_compat_r; omega. Qed.
q represents a basis big enough so that all the sequence x=x0 R x1 R ... R xn = y can be
encoded as the digits of c in base q
Since the growth of R is controlled by k, we can find a simple diophantine constraint
on x n q such that q is big enough.
Definition rel_iter_bound n x y := exists q c, x*power n (S k) < q /\ is_seq R c q n /\ is_digit c q 0 x /\ is_digit c q n y.
Lemma rel_iter_bound_iter n x y : rel_iter_bound n x y -> rel_iter R n x y.
Proof.
revert y; induction n as [ | n IHn ]; intros y.
* intros (q & c & H1 & H2 & H3 & H4).
red in H2.
rewrite power_0 in H1; auto.
revert H3 H4; apply is_digit_fun.
* rewrite rel_iter_S.
intros (q & c & H1 & H2 & H3 & H4).
assert (0 < q) as Hq.
{ revert H1; generalize (x*power (S n) (S k)); intros; omega. }
assert (exists z, is_digit c q n z) as H6.
{ exists (rem (div c (power n q)) q).
split.
+ apply div_rem_spec2; omega.
+ exists (div (div c (power n q)) q), (rem c (power n q)); split.
2: apply div_rem_spec2; red; rewrite power_0_inv; omega.
rewrite <- div_rem_spec1 with (p := q).
apply div_rem_spec1. }
destruct H6 as (z & H6); exists z; split.
+ apply IHn.
exists q, c; repeat (split; auto).
- apply le_lt_trans with (2 := H1), mult_le_compat; auto.
simpl.
replace (power n (S k)) with (1*power n (S k)) at 1 by omega.
apply mult_le_compat; auto; omega.
- intros i Hi; apply H2; omega.
+ destruct (H2 n) as (u & v & G1 & G2 & G3); auto.
rewrite is_digit_fun with (1 := H4) (2 := G2),
is_digit_fun with (1 := H6) (2 := G1); auto.
Qed.
Notation power := (mscal mult 1).
Notation "∑" := (msum plus 0).
Lemma rel_iter_iter_bound n x y : rel_iter R n x y -> rel_iter_bound n x y.
Proof.
intros H.
apply rel_iter_sequence in H.
destruct H as (f & H1 & H2 & H3).
assert (forall i, i <= n -> f i <= power i (S k) * x) as Hf.
{ induction i as [ | i IHi ]; intros Hi; simpl; try omega.
specialize (H3 _ Hi).
apply Hk' in H3.
apply le_trans with (1 := H3).
rewrite power_S, <- mult_assoc.
apply mult_le_compat; auto.
apply IHi; omega. }
set (q := S (x * power n (S k))).
assert (q <> 0) as Hq by discriminate.
assert (forall i, i <= n -> f i < q) as Hfq.
{ unfold q; intros i Hi.
apply le_n_S, le_trans with (1 := Hf _ Hi).
rewrite mult_comm; apply mult_le_compat; auto.
apply power_mono; auto; omega. }
set (c := ∑ (S n) (fun i => f i * power i q)).
assert (forall i, i <= n -> is_digit c q i (f i)) as Hc.
{ intros i Hi; split; auto.
+ exists (∑ (n-i) (fun j => f (1+i+j) * power j q)),
(∑ i (fun i => f i * power i q)); split.
2: apply sum_power_lt; auto; intros; apply Hfq; omega.
unfold c; replace (S n) with (i+S (n - i)) by omega.
rewrite msum_plus, plus_comm; f_equal; auto.
rewrite msum_ext with (g := fun k => power i q*(f (i+k)*power k q)).
* rewrite sum_0n_scal_l, mult_comm; f_equal.
rewrite msum_S, plus_comm; f_equal.
2: simpl; rewrite Nat.mul_1_r; f_equal; omega.
rewrite (mult_comm _ q), <- sum_0n_scal_l.
apply msum_ext.
intros j _.
replace (i+S j) with (1+i+j) by omega.
rewrite power_S; ring.
* intros j _; rewrite power_plus; ring. }
exists q, c; split; [ | split; [ | split ] ].
+ unfold q; auto.
+ intros i Hi; exists (f i), (f (S i)).
split; [ | split ].
* apply Hc; omega.
* apply Hc; omega.
* apply H3; auto.
+ rewrite <- H1; apply Hc; omega.
+ rewrite <- H2; apply Hc; omega.
Qed.
Hint Resolve rel_iter_bound_iter rel_iter_iter_bound.
Theorem rel_iter_bound_equiv n x y : rel_iter R n x y <-> rel_iter_bound n x y.
Proof. split; auto. Qed.
End rel_iter_bound.
Section rel_iter_seq.
Variable (R : nat -> nat -> Prop).
q represents a basis big enough so that all the sequence x=x0 R x1 R ... R xn = y can be
encoded as the digits of c in base q
Definition rel_iter_seq n x y := exists q c, is_seq R c q n /\ is_digit c q 0 x /\ is_digit c q n y.
Lemma rel_iter_seq_iter n x y : rel_iter_seq n x y -> rel_iter R n x y.
Proof.
revert y; induction n as [ | n IHn ]; intros y.
* intros (q & c & H2 & H3 & H4).
red in H2.
simpl; revert H3 H4; apply is_digit_fun.
* rewrite rel_iter_S.
intros (q & c & H2 & H3 & H4).
red in H2.
assert (0 < q) as Hq.
{ destruct H3; omega. }
assert (exists z, is_digit c q n z) as H6.
{ exists (rem (div c (power n q)) q).
split.
+ apply div_rem_spec2; omega.
+ exists (div (div c (power n q)) q), (rem c (power n q)); split.
2: apply div_rem_spec2; red; rewrite power_0_inv; omega.
rewrite <- div_rem_spec1 with (p := q).
apply div_rem_spec1. }
destruct H6 as (z & H6); exists z; split.
+ apply IHn.
exists q, c; msplit 2; auto.
intros i Hi; apply H2; omega.
+ destruct (H2 n) as (u & v & G1 & G2 & G3); auto.
rewrite is_digit_fun with (1 := H4) (2 := G2),
is_digit_fun with (1 := H6) (2 := G1); auto.
Qed.
Notation power := (mscal mult 1).
Notation "∑" := (msum plus 0).
Lemma rel_iter_iter_seq n x y : rel_iter R n x y -> rel_iter_seq n x y.
Proof.
intros H.
apply rel_iter_sequence in H.
destruct H as (f & H1 & H2 & H3).
assert (exists q, forall i, i <= n -> f i < q) as Hq.
{ clear H1 H2 H3.
revert f; induction n as [ | n IHn ]; intros f.
+ exists (S (f 0)); intros [ | ] ?; omega.
+ destruct IHn with (f := fun i => (f (S i))) as (q & Hq).
exists (1+f 0+q); intros [ | i ] Hi; try omega.
generalize (Hq i); intros; omega. }
destruct Hq as (q & Hfq).
assert (q <> 0) as Hq.
{ generalize (Hfq 0); intros; omega. }
set (c := ∑ (S n) (fun i => f i * power i q)).
assert (forall i, i <= n -> is_digit c q i (f i)) as Hc.
{ intros i Hi; split; auto.
+ exists (∑ (n-i) (fun j => f (1+i+j) * power j q)),
(∑ i (fun i => f i * power i q)); split.
2: apply sum_power_lt; auto; intros; apply Hfq; omega.
unfold c; replace (S n) with (i+S (n - i)) by omega.
rewrite msum_plus, plus_comm; f_equal; auto.
rewrite msum_ext with (g := fun k => power i q*(f (i+k)*power k q)).
* rewrite sum_0n_scal_l, mult_comm; f_equal.
rewrite msum_S, plus_comm; f_equal.
2: simpl; rewrite Nat.mul_1_r; f_equal; omega.
rewrite (mult_comm _ q), <- sum_0n_scal_l.
apply msum_ext.
intros j _.
replace (i+S j) with (1+i+j) by omega.
rewrite power_S; ring.
* intros j _; rewrite power_plus; ring. }
exists q, c; msplit 2.
+ intros i Hi; exists (f i), (f (S i)).
split; [ | split ].
* apply Hc; omega.
* apply Hc; omega.
* apply H3; auto.
+ rewrite <- H1; apply Hc; omega.
+ rewrite <- H2; apply Hc; omega.
Qed.
Hint Resolve rel_iter_seq_iter rel_iter_iter_seq.
Theorem rel_iter_seq_equiv n x y : rel_iter R n x y <-> rel_iter_seq n x y.
Proof. split; auto. Qed.
End rel_iter_seq.