Require Import List Arith Omega Permutation.
From Undecidability.Shared.Libs.DLW.Utils Require Import list_focus utils_tac.
Set Implicit Arguments.
Create HintDb length_db.
Tactic Notation "rew" "length" := autorewrite with length_db.
Tactic Notation "rew" "length" "in" hyp(H) := autorewrite with length_db in H.
Infix "~p" := (@Permutation _) (at level 70).
Section length.
Variable X : Type.
Implicit Type l : list X.
Fact length_nil : length (@nil X) = 0.
Proof. auto. Qed.
Fact length_cons x l : length (x::l) = S (length l).
Proof. auto. Qed.
End length.
Hint Rewrite length_nil length_cons app_length map_length rev_length : length_db.
Section list_an.
Fixpoint list_an a n :=
match n with
| 0 => nil
| S n => a::list_an (S a) n
end.
Fact list_an_S a n : list_an a (S n) = a::list_an (S a) n.
Proof. auto. Qed.
Fact list_an_plus a n m : list_an a (n+m) = list_an a n ++ list_an (n+a) m.
Proof.
revert a; induction n; intros a; simpl; auto.
rewrite IHn; do 3 f_equal; omega.
Qed.
Fact list_an_length a n : length (list_an a n) = n.
Proof.
revert a; induction n; intro; simpl; f_equal; auto.
Qed.
Fact list_an_spec a n m : In m (list_an a n) <-> a <= m < a+n.
Proof.
revert a; induction n as [ | n IHn ]; simpl; intros a; [ | rewrite IHn ]; omega.
Qed.
Fact map_S_list_an a n : map S (list_an a n) = list_an (S a) n.
Proof. revert a; induction n; simpl; intro; f_equal; auto. Qed.
Fact list_an_app_inv a n l r : list_an a n = l++r -> l = list_an a (length l) /\ r = list_an (a+length l) (length r).
Proof.
revert a l r; induction n as [ | n IHn ]; intros a l r; simpl.
+ destruct l; destruct r; intros; auto; discriminate.
+ destruct l as [ | x l ]; simpl; intros H1.
* split; auto.
rewrite <- H1; simpl; rewrite Nat.add_0_r, list_an_length; auto.
* injection H1; clear H1; intros H1 H0.
apply IHn in H1; destruct H1; split; f_equal; auto.
rewrite H1 at 1; f_equal; omega.
Qed.
End list_an.
Hint Rewrite list_an_length : length_db.
Definition list_fun_inv X (l : list X) (x : X) : { f : nat -> X | l = map f (list_an 0 (length l)) }.
Proof.
induction l as [ | y l IHl ].
+ exists (fun _ => x); auto.
+ destruct IHl as (f & Hf).
exists (fun i => match i with 0 => y | S i => f i end); simpl.
f_equal.
rewrite Hf, <- map_S_list_an, map_length, list_an_length, map_map; auto.
Qed.
Fact list_upper_bound (l : list nat) : { m | forall x, In x l -> x < m }.
Proof.
induction l as [ | x l (m & Hm) ].
+ exists 0; simpl; tauto.
+ exists (1+x+m); intros y [ [] | H ]; simpl; try omega.
generalize (Hm _ H); intros; omega.
Qed.
Section list_injective.
Variable X : Type.
Definition list_injective (ll : list X) := forall l a m b r, ll = l ++ a :: m ++ b :: r -> a <> b.
Fact in_list_injective_0 : list_injective nil.
Proof. intros [] ? ? ? ? ?; discriminate. Qed.
Fact in_list_injective_1 x ll : ~ In x ll -> list_injective ll -> list_injective (x::ll).
Proof.
intros H1 H2 l a m b r H3.
destruct l as [ | u l ].
inversion H3; subst.
destruct m as [ | v m ].
contradict H1; subst; simpl; auto.
contradict H1; subst; simpl; right; apply in_or_app; right; left; auto.
inversion H3; subst.
apply (H2 l _ m _ r); auto.
Qed.
Fact list_injective_inv x ll : list_injective (x::ll) -> ~ In x ll /\ list_injective ll.
Proof.
split.
intros H1; apply in_split in H1; destruct H1 as (l & r & ?); subst.
apply (H nil x l x r); auto.
intros l a m b r ?; apply (H (x::l) a m b r); subst; solve list eq.
Qed.
Variable P : list X -> Type.
Hypothesis (HP0 : P nil).
Hypothesis (HP1 : forall x l, ~ In x l -> P l -> P (x::l)).
Theorem list_injective_rect l : list_injective l -> P l.
Proof.
induction l as [ [ | x l ] IHl ] using (measure_rect (@length _)).
intro; apply HP0.
intros; apply HP1.
apply list_injective_inv, H.
apply IHl; simpl; auto.
apply list_injective_inv with (1 := H).
Qed.
End list_injective.
Fact list_injective_map X Y (f : X -> Y) ll :
(forall x y, f x = f y -> x = y) -> list_injective ll -> list_injective (map f ll).
Proof.
intros Hf.
induction 1 as [ | x l Hl IHl ] using list_injective_rect.
apply in_list_injective_0.
simpl; apply in_list_injective_1; auto.
contradict Hl.
apply in_map_iff in Hl.
destruct Hl as (y & Hl & ?).
apply Hf in Hl; subst; auto.
Qed.
Section iter.
Variable (X : Type) (f : X -> X).
Fixpoint iter x n :=
match n with
| 0 => x
| S n => iter (f x) n
end.
Fact iter_plus x a b : iter x (a+b) = iter (iter x a) b.
Proof. revert x; induction a; intros x; simpl; auto. Qed.
Fact iter_swap x n : iter (f x) n = f (iter x n).
Proof.
change (iter (f x) n) with (iter x (1+n)).
rewrite plus_comm, iter_plus; auto.
Qed.
End iter.
Fixpoint list_repeat X (x : X) n :=
match n with
| 0 => nil
| S n => x::list_repeat x n
end.
Fact list_repeat_plus X x a b : @list_repeat X x (a+b) = list_repeat x a ++ list_repeat x b.
Proof. induction a; simpl; f_equal; auto. Qed.
Fact list_repeat_length X x n : length (@list_repeat X x n) = n.
Proof. induction n; simpl; f_equal; auto. Qed.
Fact In_list_repeat X (x y : X) n : In y (list_repeat x n) -> x = y /\ 0 < n.
Proof.
induction n; simpl; intros [].
split; auto; omega.
split; try omega; apply IHn; auto.
Qed.
Fact map_list_repeat X Y f x n : @map X Y f (list_repeat x n) = list_repeat (f x) n.
Proof. induction n; simpl; f_equal; auto. Qed.
Fact map_cst_repeat X Y (y : Y) ll : map (fun _ : X => y) ll = list_repeat y (length ll).
Proof. induction ll; simpl; f_equal; auto. Qed.
Fact map_cst_snoc X Y (y : Y) ll mm : y :: map (fun _ : X => y) ll++mm = map (fun _ => y) ll ++ y::mm.
Proof. induction ll; simpl; f_equal; auto. Qed.
Fact map_cst_rev X Y (y : Y) ll : map (fun _ : X => y) (rev ll) = map (fun _ => y) ll.
Proof. do 2 rewrite map_cst_repeat; rewrite rev_length; auto. Qed.
Fact In_perm X (x : X) l : In x l -> exists m, x::m ~p l.
Proof.
intros H; apply in_split in H.
destruct H as (m & k & ?); subst.
exists (m++k).
apply Permutation_cons_app; auto.
Qed.
Fact list_app_eq_inv X (l1 l2 r1 r2 : list X) :
l1++r1 = l2++r2 -> { m | l1++m = l2 /\ r1 = m++r2 }
+ { m | l2++m = l1 /\ r2 = m++r1 }.
Proof.
revert l2 r1 r2; induction l1 as [ | x l1 IH ].
intros; left; exists l2; auto.
intros [ | y l2 ] r1 r2; simpl; intros H.
right; exists (x::l1); auto.
inversion H.
destruct (IH l2 r1 r2) as [ (m & Hm) | (m & Hm) ]; auto;
[ left | right ]; exists m; split; f_equal; tauto.
Qed.
Fact list_app_cons_eq_inv X (l1 l2 r1 r2 : list X) x :
l1++r1 = l2++x::r2 -> { m | l1++m = l2 /\ r1 = m++x::r2 }
+ { m | l2++x::m = l1 /\ r2 = m++r1 }.
Proof.
intros H.
apply list_app_eq_inv in H.
destruct H as [ H | (m & H1 & H2) ]; auto.
destruct m as [ | y m ].
left; exists nil; simpl in *; split; auto.
revert H1; do 2 rewrite <- app_nil_end; auto.
inversion H2; subst.
right; exists m; auto.
Qed.
Fact list_cons_app_cons_eq_inv X (l2 r1 r2 : list X) x y :
x::r1 = l2++y::r2 -> (l2 = nil /\ x = y /\ r1 = r2)
+ { m | l2 = x::m /\ r1 = m++y::r2 }.
Proof.
intros H.
destruct l2 as [ | z m ]; simpl in H.
+ left; inversion H; auto.
+ right; exists m; inversion H; auto.
Qed.
Fact list_app_inj X (l1 l2 r1 r2 : list X) : length l1 = length l2 -> l1++r1 = l2++r2 -> l1 = l2 /\ r1 = r2.
Proof.
revert l2; induction l1 as [ | x l1 IH ]; intros [ | y l2 ]; try discriminate.
simpl; auto.
intros H1 H2; inversion H1; inversion H2.
apply IH in H4; auto.
split; f_equal; tauto.
Qed.
Fact list_split_length X (ll : list X) k : k <= length ll -> { l : _ & { r | ll = l++r /\ length l = k } }.
Proof.
revert k; induction ll as [ | x ll IHll ]; intros k.
exists nil, nil; split; simpl in * |- *; auto; omega.
destruct k as [ | k ]; intros Hk.
exists nil, (x::ll); simpl; split; auto.
destruct (IHll k) as (l & r & H1 & H2).
simpl in Hk; omega.
exists (x::l), r; split; simpl; auto; f_equal; auto.
Qed.
Fact list_pick X (ll : list X) k : k < length ll -> { x : _ & { l : _ & { r | ll = l++x::r /\ length l = k } } }.
Proof.
revert k; induction ll as [ | x ll IHll ]; intros k.
simpl; omega.
destruct k as [ | k ]; intros H.
exists x, nil, ll; simpl; auto.
simpl in H.
destruct IHll with (k := k) as (y & l & r & ? & ?); try omega.
exists y, (x::l), r; subst; simpl; split; auto.
Qed.
Fact list_split_middle X l1 (x1 : X) r1 l2 x2 r2 :
~ In x1 l2 -> ~ In x2 l1 -> l1++x1::r1 = l2++x2::r2 -> l1 = l2 /\ x1 = x2 /\ r1 = r2.
Proof.
intros H1 H2 H.
apply list_app_eq_inv in H.
destruct H as [ (m & H3 & H4) | (m & H3 & H4) ]; destruct m.
inversion H4; subst; rewrite <- app_nil_end; auto.
inversion H4; subst; destruct H1; apply in_or_app; right; left; auto.
inversion H4; subst; rewrite <- app_nil_end; auto.
inversion H4; subst; destruct H2; apply in_or_app; right; left; auto.
Qed.
Section flat_map.
Variable (X Y : Type) (f : X -> list Y).
Fact flat_map_app l1 l2 : flat_map f (l1++l2) = flat_map f l1 ++ flat_map f l2.
Proof.
induction l1; simpl; auto; solve list eq; f_equal; auto.
Qed.
Fact flat_map_app_inv l r1 y r2 : flat_map f l = r1++y::r2 -> exists l1 m1 x m2 l2, l = l1++x::l2 /\ f x = m1++y::m2
/\ r1 = flat_map f l1++m1 /\ r2 = m2++flat_map f l2.
Proof.
revert r1 y r2.
induction l as [ | x l IHl ]; intros r1 y r2 H.
+ destruct r1; discriminate.
+ simpl in H.
apply list_app_cons_eq_inv in H.
destruct H as [ (m & Hm1 & Hm2) | (m & Hm1 & Hm2) ].
- apply IHl in Hm2.
destruct Hm2 as (l1 & m1 & x' & m2 & l2 & G1 & G2 & G3 & G4); subst.
exists (x::l1), m1, x', m2, l2; simpl; repeat (split; auto).
rewrite app_ass; auto.
- exists nil, r1, x, m, l; auto.
Qed.
End flat_map.
Definition prefix X (l ll : list X) := exists r, ll = l++r.
Infix "<p" := (@prefix _) (at level 70, no associativity).
Section prefix.
Variable X : Type.
Implicit Types (l ll : list X).
Fact in_prefix_0 ll : nil <p ll.
Proof.
exists ll; auto.
Qed.
Fact in_prefix_1 x l ll : l <p ll -> x::l <p x::ll.
Proof.
intros (r & ?); subst; exists r; auto.
Qed.
Fact prefix_length l m : l <p m -> length l <= length m.
Proof. intros (? & ?); subst; rew length; omega. Qed.
Fact prefix_app_lft l r1 r2 : r1 <p r2 -> l++r1 <p l++r2.
Proof.
intros (a & ?); subst.
exists a; rewrite app_ass; auto.
Qed.
Fact prefix_inv x y l ll : x::l <p y::ll -> x = y /\ l <p ll.
Proof.
intros (r & Hr).
inversion Hr; split; auto.
exists r; auto.
Qed.
Fact prefix_list_inv l r rr : l++r <p l++rr -> r <p rr.
Proof.
induction l as [ | x l IHl ]; simpl; auto.
intros H; apply prefix_inv, proj2, IHl in H; auto.
Qed.
Fact prefix_refl l : l <p l.
Proof. exists nil; rewrite <- app_nil_end; auto. Qed.
Fact prefix_trans l1 l2 l3 : l1 <p l2 -> l2 <p l3 -> l1 <p l3.
Proof. intros (m1 & H1) (m2 & H2); subst; exists (m1++m2); solve list eq. Qed.
Section prefix_rect.
Variables (P : list X -> list X -> Type)
(HP0 : forall ll, P nil ll)
(HP1 : forall x l ll, l <p ll -> P l ll -> P (x::l) (x::ll)).
Definition prefix_rect l ll : prefix l ll -> P l ll.
Proof.
revert l; induction ll as [ | x ll IHll ]; intros l H.
replace l with (nil : list X).
apply HP0.
destruct H as (r & Hr).
destruct l; auto; discriminate.
destruct l as [ | y l ].
apply HP0.
apply prefix_inv in H.
destruct H as (? & E); subst y.
apply HP1; [ | apply IHll ]; trivial.
Qed.
End prefix_rect.
Fact prefix_app_inv l1 l2 r1 r2 : l1++l2 <p r1++r2 -> { l1 <p r1 } + { r1 <p l1 }.
Proof.
revert l2 r1 r2; induction l1 as [ | x l1 IH ].
left; apply in_prefix_0.
intros l2 [ | y r1 ] r2.
right; apply in_prefix_0.
simpl; intros H; apply prefix_inv in H.
destruct H as (E & H); subst y.
destruct IH with (1 := H); [ left | right ];
apply in_prefix_1; auto.
Qed.
End prefix.
Definition prefix_spec X (l ll : list X) : l <p ll -> { r | ll = l ++ r }.
Proof.
induction 1 as [ ll | x l ll _ (r & Hr) ] using prefix_rect.
exists ll; trivial.
exists r; simpl; f_equal; auto.
Qed.
Fact prefix_app_lft_inv X (l1 l2 m : list X) : l1++l2 <p m -> { m2 | m = l1++m2 /\ l2 <p m2 }.
Proof.
intros H.
apply prefix_spec in H.
destruct H as (r & H).
exists (l2++r); simpl.
solve list eq in H; split; auto.
exists r; auto.
Qed.
Section list_assoc.
Variables (X Y : Type) (eq_X_dec : eqdec X).
Fixpoint list_assoc x l : option Y :=
match l with
| nil => None
| (y,a)::l => if eq_X_dec x y then Some a else list_assoc x l
end.
Fact list_assoc_eq x y l x' : x = x' -> list_assoc x' ((x,y)::l) = Some y.
Proof.
intros []; simpl.
destruct (eq_X_dec x x) as [ | [] ]; auto.
Qed.
Fact list_assoc_neq x y l x' : x <> x' -> list_assoc x' ((x,y)::l) = list_assoc x' l.
Proof.
intros H; simpl.
destruct (eq_X_dec x' x) as [ | ]; auto.
destruct H; auto.
Qed.
Fact list_assoc_In x l :
match list_assoc x l with
| None => ~ In x (map fst l)
| Some y => In (x,y) l
end.
Proof.
induction l as [ | (x',y) l IHl ]; simpl; auto.
destruct (eq_X_dec x x'); subst; auto.
destruct (list_assoc x l); auto.
intros [ ? | ]; subst; tauto.
Qed.
Fact In_list_assoc x l : In x (map fst l) -> { y | list_assoc x l = Some y /\ In (x,y) l }.
Proof.
intros H.
generalize (list_assoc_In x l).
destruct (list_assoc x l) as [ y | ].
exists y; auto.
tauto.
Qed.
Fact not_In_list_assoc x l : ~ In x (map fst l) -> list_assoc x l = None.
Proof.
intros H.
generalize (list_assoc_In x l).
destruct (list_assoc x l) as [ y | ]; auto.
intros H1; contradict H.
apply in_map_iff.
exists (x,y); simpl; auto.
Qed.
Fact list_assoc_app x ll mm : list_assoc x (ll++mm)
= match list_assoc x ll with
| None => list_assoc x mm
| Some y => Some y
end.
Proof.
induction ll as [ | (x',?) ]; simpl; auto.
destruct (eq_X_dec x x'); auto.
Qed.
End list_assoc.
Section list_first_dec.
Variable (X : Type) (P : X -> Prop) (Pdec : forall x, { P x } + { ~ P x }).
Theorem list_choose_dec ll : { l : _ & { x : _ & { r | ll = l++x::r /\ P x /\ forall y, In y l -> ~ P y } } }
+ { forall x, In x ll -> ~ P x }.
Proof.
induction ll as [ | a ll IH ];
[ | destruct (Pdec a) as [ Ha | Ha ]; [ | destruct IH as [ (l & x & r & H1 & H2 & H3) | H ]] ].
* right; intros _ [].
* left; exists nil, a, ll; repeat split; auto.
* left; exists (a::l), x, r; repeat split; subst; auto.
intros ? [ | ]; subst; auto.
* right; intros ? [ | ]; subst; auto.
Qed.
Theorem list_first_dec a ll : P a -> In a ll -> { l : _ & { x : _ & { r | ll = l++x::r /\ P x /\ forall y, In y l -> ~ P y } } }.
Proof.
intros H1 H2.
destruct (list_choose_dec ll) as [ H | H ]; trivial.
destruct (H _ H2 H1).
Qed.
End list_first_dec.
Section map.
Variable (X Y : Type) (f : X -> Y).
Fact map_cons_inv ll y m : map f ll = y::m -> { x : _ & { l | ll = x::l /\ f x = y /\ map f l = m } }.
Proof.
destruct ll as [ | x l ]; try discriminate; simpl.
intros H; inversion H; subst; exists x, l; auto.
Qed.
Fact map_app_inv ll m n : map f ll = m++n -> { l : _ & { r | ll = l++r /\ m = map f l /\ n = map f r } }.
Proof.
revert m n; induction ll as [ | x ll IH ]; intros m n H.
* destruct m; destruct n; try discriminate; exists nil, nil; auto.
* destruct m as [ | y m ]; simpl in H.
+ exists nil, (x::ll); auto.
+ inversion H; subst y.
destruct IH with (1 := H2) as (l & r & H3 & H4 & H5); subst.
exists (x::l), r; auto.
Qed.
Fact map_middle_inv ll m y n : map f ll = m++y::n -> { l : _ & { x : _ & { r | ll = l++x::r /\ map f l = m /\ f x = y /\ map f r = n } } }.
Proof.
intros H.
destruct map_app_inv with (1 := H) as (l & r & H1 & H2 & H3).
symmetry in H3.
destruct map_cons_inv with (1 := H3) as (x & r' & H4 & H5 & H6); subst.
exists l, x, r'; auto.
Qed.
End map.
Fact Forall2_mono X Y (R S : X -> Y -> Prop) :
(forall x y, R x y -> S x y) -> forall l m, Forall2 R l m -> Forall2 S l m.
Proof.
induction 2; constructor; auto.
Qed.
Fact Forall2_nil_inv_l X Y R m : @Forall2 X Y R nil m -> m = nil.
Proof.
inversion_clear 1; reflexivity.
Qed.
Fact Forall2_nil_inv_r X Y R m : @Forall2 X Y R m nil -> m = nil.
Proof.
inversion_clear 1; reflexivity.
Qed.
Fact Forall2_cons_inv X Y R x l y m : @Forall2 X Y R (x::l) (y::m) <-> R x y /\ Forall2 R l m.
Proof.
split.
inversion_clear 1; auto.
intros []; constructor; auto.
Qed.
Fact Forall2_app_inv_l X Y R l1 l2 m :
@Forall2 X Y R (l1++l2) m -> { m1 : _ & { m2 | Forall2 R l1 m1 /\ Forall2 R l2 m2 /\ m = m1++m2 } }.
Proof.
revert l2 m;
induction l1 as [ | x l1 IH ]; simpl; intros l2 m H.
exists nil, m; repeat split; auto.
destruct m as [ | y m ].
apply Forall2_nil_inv_r in H; discriminate H.
apply Forall2_cons_inv in H; destruct H as [ H1 H2 ].
apply IH in H2.
destruct H2 as (m1 & m2 & H2 & H3 & H4); subst m.
exists (y::m1), m2; repeat split; auto.
Qed.
Fact Forall2_app_inv_r X Y R l m1 m2 :
@Forall2 X Y R l (m1++m2) -> { l1 : _ & { l2 | Forall2 R l1 m1 /\ Forall2 R l2 m2 /\ l = l1++l2 } }.
Proof.
revert m2 l;
induction m1 as [ | y m1 IH ]; simpl; intros m2 l H.
exists nil, l; repeat split; auto.
destruct l as [ | x l ].
apply Forall2_nil_inv_l in H; discriminate H.
apply Forall2_cons_inv in H; destruct H as [ H1 H2 ].
apply IH in H2.
destruct H2 as (l1 & l2 & H2 & H3 & H4); subst l.
exists (x::l1), l2; repeat split; auto.
Qed.
Fact Forall2_cons_inv_l X Y R a ll mm :
@Forall2 X Y R (a::ll) mm
-> { b : _ & { mm' | R a b /\ mm = b::mm' /\ Forall2 R ll mm' } }.
Proof.
intros H.
apply Forall2_app_inv_l with (l1 := a::nil) (l2 := ll) in H.
destruct H as (l & mm' & H1 & H2 & H3).
destruct l as [ | y l ].
exfalso; inversion H1.
apply Forall2_cons_inv in H1.
destruct H1 as [ H1 H4 ].
apply Forall2_nil_inv_l in H4; subst l.
exists y, mm'; auto.
Qed.
Fact Forall2_cons_inv_r X Y R b ll mm :
@Forall2 X Y R ll (b::mm)
-> { a : _ & { ll' | R a b /\ ll = a::ll' /\ Forall2 R ll' mm } }.
Proof.
intros H.
apply Forall2_app_inv_r with (m1 := b::nil) (m2 := mm) in H.
destruct H as (l & ll' & H1 & H2 & H3).
destruct l as [ | x l ].
exfalso; inversion H1.
apply Forall2_cons_inv in H1.
destruct H1 as [ H1 H4 ].
apply Forall2_nil_inv_r in H4; subst l.
exists x, ll'; auto.
Qed.
Fact Forall2_map_left X Y Z (R : Y -> X -> Prop) (f : Z -> Y) ll mm : Forall2 R (map f ll) mm <-> Forall2 (fun x y => R (f x) y) ll mm.
Proof.
split.
revert mm.
induction ll; intros [ | y mm ] H; simpl in H; auto; try (inversion H; fail).
apply Forall2_cons_inv in H; constructor.
tauto.
apply IHll; tauto.
induction 1; constructor; auto.
Qed.
Fact Forall2_map_right X Y Z (R : Y -> X -> Prop) (f : Z -> X) mm ll : Forall2 R mm (map f ll) <-> Forall2 (fun y x => R y (f x)) mm ll.
Proof.
split.
revert mm.
induction ll; intros [ | y mm ] H; simpl in H; auto; try (inversion H; fail).
apply Forall2_cons_inv in H; constructor.
tauto.
apply IHll; tauto.
induction 1; constructor; auto.
Qed.
Fact Forall2_map_both X Y X' Y' (R : X -> Y -> Prop) (f : X' -> X) (g : Y' -> Y) ll mm : Forall2 R (map f ll) (map g mm) <-> Forall2 (fun x y => R (f x) (g y)) ll mm.
Proof.
rewrite Forall2_map_left, Forall2_map_right; split; auto.
Qed.
Fact Forall2_Forall X (R : X -> X -> Prop) ll : Forall2 R ll ll <-> Forall (fun x => R x x) ll.
Proof.
split.
induction ll as [ | x ll ]; inversion_clear 1; auto.
induction 1; auto.
Qed.
Fact Forall_app X (P : X -> Prop) ll mm : Forall P (ll++mm) <-> Forall P ll /\ Forall P mm.
Proof.
repeat rewrite Forall_forall.
split.
firstorder.
intros (H1 & H2) x Hx.
apply in_app_or in Hx; firstorder.
Qed.
Fact Forall_cons_inv X (P : X -> Prop) x ll : Forall P (x::ll) <-> P x /\ Forall P ll.
Proof.
split.
+ inversion 1; auto.
+ constructor; tauto.
Qed.
Fact Forall_rev X (P : X -> Prop) ll : Forall P ll -> Forall P (rev ll).
Proof.
induction 1 as [ | x ll Hll IH ].
constructor.
simpl.
apply Forall_app; split; auto.
Qed.
Fact Forall_map X Y (f : X -> Y) (P : Y -> Prop) ll : Forall P (map f ll) <-> Forall (fun x => P (f x)) ll.
Proof.
split.
+ induction ll; simpl; try rewrite Forall_cons_inv; constructor; tauto.
+ induction 1; simpl; constructor; auto.
Qed.
Fact Forall_forall_map X (f : nat -> X) n l (P : X -> Prop) :
l = map f (list_an 0 n) -> (forall i, i < n -> P (f i)) <-> Forall P l.
Proof.
intros Hl; rewrite Forall_forall.
split.
+ intros H x; rewrite Hl, in_map_iff.
intros (y & ? & H1).
apply list_an_spec in H1; subst; apply H; omega.
+ intros H x Hx; apply H; rewrite Hl, in_map_iff.
exists x; split; auto; apply list_an_spec; omega.
Qed.
Fact Forall_impl X (P Q : X -> Prop) ll : (forall x, In x ll -> P x -> Q x) -> Forall P ll -> Forall Q ll.
Proof.
intros H; induction 1 as [ | x ll Hx Hll IH ]; constructor.
+ apply H; simpl; auto.
+ apply IH; intros ? ?; apply H; simpl; auto.
Qed.
Fact Forall_filter X (P : X -> Prop) (f : X -> bool) ll : Forall P ll -> Forall P (filter f ll).
Proof. induction 1; simpl; auto; destruct (f x); auto. Qed.