From Undecidability Require Export TM.TM.
Require Import PslBase.FiniteTypes.DepPairs EqdepFacts.

Switch Combinator


Section Switch.

  Variable n : nat.
  Variable sig : finType.

  Variable F : finType.

  Variable pM1 : pTM sig F n.
  Variable F' : finType.
  Variable pMf : F -> pTM sig F' n.

The (unlabelled) machine M
  Notation M1 := (projT1 pM1).
The labelling function of the machine M
  Notation p1 := (projT2 pM1).

The (unlabelled) case-machine M' y
  Notation "'Mf' y" := (projT1 (pMf y)) (at level 10).
The labelling function of the case-machine M' y
  Notation "'p2' y" := (projT2 (pMf y)) (at level 10).

  Definition Switch_trans :
    (TM.states M1 + { f : F & TM.states (Mf f) }) * Vector.t (option sig) n ->
    (TM.states M1 + { f : F & TM.states (Mf f) }) * Vector.t (option sig * move) n :=
    fun '(q, s) =>
        match q with
        | inl q =>
          if halt q
          then (inr (existT _ (p1 q) (start (Mf (p1 q)))), nop_action)
          else let (q', a) := trans (q, s) in (inl q', a)
        | inr q =>
          let (q', a) := trans (projT2 q, s) in
          (inr (existT _ (projT1 q) q'), a)
        end.

  Definition Switch_halt : (TM.states M1 + { f : F & TM.states (Mf f) }) -> bool :=
    fun q =>
      match q with
      | inl _ => false
      | inr q => halt (projT2 q)
      end.

  Definition SwitchTM : mTM sig n :=
    {|
      trans := Switch_trans;
      halt := Switch_halt;
      start := inl (start M1);
    |}.

  Definition Switch_p : (states SwitchTM) -> F' :=
    fun q => match q with
          | inl q => p2 (p1 q) (start (Mf (p1 q)))
          | inr q => p2 (projT1 q) (projT2 q)
          end.

  Definition Switch : pTM sig F' n := (SwitchTM; Switch_p).


Lift configurations of M1 to configurations of Switch
  Definition lift_confL (c : mconfig sig (states M1) n) : mconfig sig (states SwitchTM) n :=
    mk_mconfig (inl (cstate c)) (ctapes c).

Lift configuration of M2 to configurations of Switch
  Definition lift_confR (f : F) (c : mconfig sig (states (Mf f) ) n) : mconfig sig (states SwitchTM) n :=
    mk_mconfig (inr (existT (fun f0 : F => states (Mf f0)) f (cstate c))) (ctapes c).

Lifted Steps of M1 are compatible with steps in M1, for non-halting states
  Lemma step_comp_liftL (c : mconfig sig (states M1) n) :
    haltConf c = false -> step (lift_confL c) = lift_confL (step c).
  Proof.
    unfold lift_confL, step, haltConf. cbn. destruct c as [q t]; cbn in *. intros H. rewrite H.
    destruct (trans _) eqn:E. cbn. reflexivity.
  Qed.

Lifted steps of case-machines Mf f are compatible with steps in Mf f
  Lemma step_comp_liftR f (c : mconfig sig (states (Mf f)) n) :
    step (lift_confR c) = lift_confR (step c).
  Proof.
    destruct c. unfold lift_confR, step. cbn.
    destruct (trans _) eqn:E. cbn. reflexivity.
  Qed.

Lifted halting states of M1
  Definition halt_liftL (c : mconfig sig (states (SwitchTM)) n) :=
    match cstate c with
    | inl q => halt (m := M1) q
    | inr q => true
    end.

Non-halting states of M1 are non-halting states of Switch
  Lemma halt_conf_liftL (c : mconfig sig (states SwitchTM) n) :
    halt_liftL c = false -> halt (cstate c) = false.
  Proof.
    intros H. cbn. unfold Switch_halt.
    destruct c as [q t]; cbn.
    destruct q; cbn in *; auto.
  Qed.

The "nop" transition jumps from a halting configuration of M1 to the initial configuration of the corresponding case-machine.
  Lemma step_nop_transition (c : mconfig sig (states M1) n) :
    haltConf c = true ->
     step (lift_confL c) = lift_confR (initc (Mf (p1 (cstate c))) (ctapes c)).
  Proof.
    intros Halt.
    unfold lift_confL, lift_confR. cbn. unfold haltConf in Halt.
    unfold step at 1; cbn.
    rewrite Halt. f_equal.
    apply doAct_nop.
  Qed.

The starting configuration of Switch corresponds to the starting configuration of M1.
  Lemma lift_initc t :
    initc SwitchTM t = lift_confL (initc M1 t).
  Proof. reflexivity. Qed.

This lemma is needed for the termination part. Suppose M1 terminates in c1. The case machine Mf f starts with the tapes of c1 and terminates in a configuration c2. Then, if we start Switch with the same tapes as M1, Switch terminates in the lifted configuration of c2.
  Lemma Switch_merge t (k1 k2 : nat)
        (c1 : mconfig sig (states M1) n)
        (c2 : mconfig sig (states (Mf (p1 (cstate c1)))) n) :
    loopM (initc M1 t) k1 = Some c1 ->
    loopM (initc (Mf (p1 (cstate c1))) (ctapes c1)) k2 = Some c2 ->
    loopM (initc SwitchTM t) (k1 + (1 + k2)) = Some (lift_confR c2).
  Proof.
    intros HLoop1 HLoop2. unfold loopM in *.
    apply loop_merge with (h := halt_liftL) (a2 := lift_confL c1).
    - apply halt_conf_liftL.
    - rewrite lift_initc.
      apply loop_lift with (h := haltConf (M := M1)) (f := step (M := M1)).
      + unfold haltConf. intros. cbn. reflexivity.
      + apply step_comp_liftL.
      + apply HLoop1.
    -
      rewrite loop_step by auto.
      rewrite step_nop_transition by apply (loop_fulfills HLoop1).
      eapply loop_lift with (lift := lift_confR (f := p1 (cstate c1))) (f' := step (M := SwitchTM)) (h' := haltConf (M := SwitchTM)) in HLoop2.
      + apply HLoop2.
      + intros. cbn. now destruct x.
      + intros. apply step_comp_liftR.
  Qed.

The Switch machine must take the "nop" action if it is in a final state of M1.
  Lemma step_nop_split (k2 : nat) (c2 : mconfig sig (states M1) n) (outc : mconfig sig (states SwitchTM) n) :
    haltConf c2 = true ->
    loopM (M := SwitchTM) (lift_confL c2) k2 = Some outc ->
    exists k2' c2',
      k2 = S k2' /\
      loopM (M := Mf (p1 (cstate c2))) (initc _ (ctapes c2)) k2' = Some c2' /\
      outc = lift_confR c2'.
  Proof.
    unfold loopM. intros HHalt HLoop2. unfold haltConf in HHalt.
    destruct k2 as [ | k2'].
    - inv HLoop2.
    - exists k2'. cbn in HLoop2.
      rewrite step_nop_transition in HLoop2 by assumption.
      apply loop_unlift with
          (f := step (M := Mf (p1 (cstate c2))))
          (h := haltConf (M := Mf (p1 (cstate c2)))) in HLoop2 as
          (c2'&HLoop2&->).
      + exists c2'. repeat split. exact HLoop2.
      + intros. reflexivity.
      + intros. apply step_comp_liftR.
  Qed.

  Lemma Switch_split k t (outc : mconfig sig (states SwitchTM) n) :
    loopM (initc SwitchTM t) k = Some outc ->
    exists k1 (c1 : mconfig sig (states M1) n) k2 (c2 : mconfig sig (states (Mf (p1 (cstate c1)))) n),
      loopM (initc M1 t) k1 = Some c1 /\
      loopM (initc (Mf (p1 (cstate c1))) (ctapes c1)) k2 = Some c2 /\
      outc = lift_confR c2.
  Proof.
    unfold loopM. intros H.
    apply loop_split with (h := halt_liftL) in H as (k1&c1&k2&HLoop1&HLoop2&_).
    - rewrite lift_initc in HLoop1.
      apply loop_unlift with (lift := lift_confL) (f := step (M := M1)) (h := haltConf (M := M1)) in HLoop1 as (c1'&HLoop1&->).
      + apply step_nop_split in HLoop2 as (k2'&c2'&_&HLoop2&->). 2: now apply (loop_fulfills HLoop1).
        exists k1, c1', k2', c2'. auto.
      + intros. cbn. reflexivity.
      + intros. now apply step_comp_liftL.
    - apply halt_conf_liftL.
  Qed.


Correctness
  Lemma Switch_Realise (R1 : Rel _ (F * _)) (R2 : F -> Rel _ (F' * _)) :
    pM1 R1 ->
    (forall f : F, pMf f R2 f) -> Switch (_f (R1 |_ f) R2 f).
  Proof.
    intros HRel1 HRel2. hnf in HRel1.
    hnf. intros t i outc HLoop.
    apply Switch_split in HLoop as (k1&c1&k2&c2&HLoop1&HLoop2&->). cbn.
    exists (p1 (cstate c1)), (ctapes c1). split.
    - apply (HRel1 _ _ _ HLoop1).
    - apply (HRel2 _ _ _ _ HLoop2).
  Qed.

Runtime
  Lemma Switch_TerminatesIn (R1 : Rel _ (F * _)) T1 T2 :
    pM1 R1 -> M1 T1 -> (forall f : F, Mf f ↓(T2 f)) ->
    projT1 Switch (fun tin i => exists i1 i2, T1 tin i1 /\ 1 + i1 + i2 <= i /\ forall tout yout, R1 tin (yout, tout) -> T2 yout tout i2).
  Proof.
    unfold Switch. intros HRel1 HTerm1 HTerm2. hnf in HRel1, HTerm1.
    hnf. intros t i (i1&i2&HT1&Hk&H).
    specialize HTerm1 with (1 := HT1) as (c1&HLoop1).
    specialize HRel1 with (1 := HLoop1).
    specialize H with (1 := HRel1).
    specialize (HTerm2 _ _ _ H) as (c2&HLoop2).
    pose proof Switch_merge HLoop1 HLoop2 as HLoop.
    exists (lift_confR c2). eapply loop_monotone; eauto. omega.
  Qed.

Correct + constant running time
  Lemma Switch_RealiseIn (R1 : Rel _ (F * _)) (R2 : F -> Rel _ (F' * _)) k1 k2:
    pM1 c(k1) R1 ->
    (forall f : F, pMf f c(k2) R2 f) ->
    Switch c(1 + k1 + k2) (_f (R1 |_ f) R2 f).
  Proof.
    intros (H1&H2) % Realise_total H3. apply Realise_total. split.
    - eapply Switch_Realise; eauto. intros ?. eapply Realise_total; eauto.
    - eapply TerminatesIn_monotone.
      + apply Switch_TerminatesIn; eauto. intros ?. eapply Realise_total; eauto.
      + firstorder.
  Qed.

End Switch.

Arguments Switch : simpl never.

Notation MATCH := Switch (only parsing).
Notation Match := Switch (only parsing).