Definition select (m n: nat) (X: Type) (I : Vector.t (Fin.t n) m) (V : Vector.t X n) : Vector.t X m :=
Vector.map (Vector.nth V) I.
Corollary select_nth m n X (I : Vector.t (Fin.t n) m) (V : Vector.t X n) (k : Fin.t m) :
(select I V) [@ k] = V [@ (I [@ k])].
Proof. now apply Vector.nth_map. Qed.
Vector.map (Vector.nth V) I.
Corollary select_nth m n X (I : Vector.t (Fin.t n) m) (V : Vector.t X n) (k : Fin.t m) :
(select I V) [@ k] = V [@ (I [@ k])].
Proof. now apply Vector.nth_map. Qed.
Relational tapes-lift
Section LiftTapes_Rel.
Variable (sig : finType) (F : Type).
Variable m n : nat.
Variable I : Vector.t (Fin.t n) m.
Definition not_index (i : Fin.t n) : Prop :=
~ Vector.In i I.
Variable (R : pRel sig F m).
Definition LiftTapes_select_Rel : pRel sig F n :=
fun t '(y, t') => R (select I t) (y, select I t').
Definition LiftTapes_eq_Rel : pRel sig F n :=
ignoreParam (fun t t' => forall i : Fin.t n, not_index i -> t'[@i] = t[@i]).
Definition LiftTapes_Rel := LiftTapes_select_Rel ∩ LiftTapes_eq_Rel.
Variable T : tRel sig m.
Definition LiftTapes_T : tRel sig n :=
fun t k => T (select I t) k.
End LiftTapes_Rel.
Arguments not_index : simpl never.
Arguments LiftTapes_select_Rel {sig F m n} I R x y /.
Arguments LiftTapes_eq_Rel {sig F m n} I x y /.
Arguments LiftTapes_Rel {sig F m n } I R x y /.
Arguments LiftTapes_T {sig m n} I T x y /.
Lemma vector_hd_nth (X : Type) (n : nat) (xs : Vector.t X (S n)) : Vector.hd xs = xs[@Fin0].
Proof. now destruct_vector. Qed.
Lemma vector_tl_nth (X : Type) (n : nat) (i : Fin.t (S n)) (xs : Vector.t X (S (S n))) : (Vector.tl xs)[@i] = xs[@Fin.FS i].
Proof. now destruct_vector. Qed.
Section Fill.
Variable X : Type.
Variable (sig : finType) (F : Type).
Variable m n : nat.
Variable I : Vector.t (Fin.t n) m.
Definition not_index (i : Fin.t n) : Prop :=
~ Vector.In i I.
Variable (R : pRel sig F m).
Definition LiftTapes_select_Rel : pRel sig F n :=
fun t '(y, t') => R (select I t) (y, select I t').
Definition LiftTapes_eq_Rel : pRel sig F n :=
ignoreParam (fun t t' => forall i : Fin.t n, not_index i -> t'[@i] = t[@i]).
Definition LiftTapes_Rel := LiftTapes_select_Rel ∩ LiftTapes_eq_Rel.
Variable T : tRel sig m.
Definition LiftTapes_T : tRel sig n :=
fun t k => T (select I t) k.
End LiftTapes_Rel.
Arguments not_index : simpl never.
Arguments LiftTapes_select_Rel {sig F m n} I R x y /.
Arguments LiftTapes_eq_Rel {sig F m n} I x y /.
Arguments LiftTapes_Rel {sig F m n } I R x y /.
Arguments LiftTapes_T {sig m n} I T x y /.
Lemma vector_hd_nth (X : Type) (n : nat) (xs : Vector.t X (S n)) : Vector.hd xs = xs[@Fin0].
Proof. now destruct_vector. Qed.
Lemma vector_tl_nth (X : Type) (n : nat) (i : Fin.t (S n)) (xs : Vector.t X (S (S n))) : (Vector.tl xs)[@i] = xs[@Fin.FS i].
Proof. now destruct_vector. Qed.
Section Fill.
Variable X : Type.
Replace the elements of init of which the index is in I with the element in V of that index.
Fixpoint fill {m n : nat} (I : Vector.t (Fin.t n) m) : forall (init : Vector.t X n) (V : Vector.t X m), Vector.t X n :=
match I with
| Vector.nil _ => fun init V => init
| Vector.cons _ i m' I' =>
fun init V =>
Vector.replace (fill I' init (Vector.tl V)) i (V[@Fin0])
end.
Variable m n : nat.
Implicit Types (i : Fin.t n) (j : Fin.t m).
Implicit Types (I : Vector.t (Fin.t n) m) (init : Vector.t X n) (V : Vector.t X m).
Lemma fill_correct_nth I init V i j :
dupfree I ->
I[@j] = i ->
(fill I init V)[@i] = V[@j].
Proof.
intros HDup Heq. revert V. induction HDup as [ | m index I' H1 H2 IH]; intros; cbn in *.
- exfalso. clear i Heq V. now apply fin_destruct_O in j.
- pose proof destruct_vector_cons V as (v&V'&->).
pose proof fin_destruct_S j as [(j'&?) | ? ]; cbn in *; subst; cbn in *.
+ decide (index = I'[@j']) as [ -> | Hneq].
* contradict H1. eapply vect_nth_In; eauto.
* rewrite replace_nth2; auto.
+ apply replace_nth.
Qed.
Lemma fill_not_index I init V (i : Fin.t n) :
dupfree I ->
not_index I i ->
(fill I init V)[@i] = init[@i].
Proof.
intros HDupfree. revert V i. induction HDupfree as [ | m index I' H1 H2 IH]; intros; cbn in *.
- reflexivity.
- pose proof destruct_vector_cons V as (v&V'&->).
unfold not_index in *.
decide (index = i) as [ -> | Hneq].
+ exfalso. contradict H. constructor.
+ rewrite replace_nth2; eauto. apply IH; auto.
{ intros ?. contradict H. now constructor. }
Qed.
Definition fill_default I (def : X) V :=
fill I (Vector.const def n) V.
Corollary fill_default_not_index I V def i :
dupfree I ->
not_index I i ->
(fill_default I def V)[@i] = def.
Proof. intros. unfold fill_default. rewrite fill_not_index; auto. apply Vector.const_nth. Qed.
End Fill.
Section loop_map.
Variable A B : Type.
Variable (f : A -> A) (h : A -> bool) (g : A -> B).
Hypothesis step_map_comp : forall a, g (f a) = g a.
Lemma loop_map k a1 a2 :
loop f h a1 k = Some a2 ->
g a2 = g a1.
Proof.
revert a1 a2. induction k as [ | k' IH]; intros; cbn in *.
- destruct (h a1); now inv H.
- destruct (h a1).
+ now inv H.
+ apply IH in H. now rewrite step_map_comp in H.
Qed.
End loop_map.
Section LiftNM.
Variable sig : finType.
Variable m n : nat.
Variable F : finType.
Variable pM : pTM sig F m.
Variable I : Vector.t ((Fin.t n)) m.
Variable I_dupfree : dupfree I.
Definition LiftTapes_trans :=
fun '(q, sym ) =>
let (q', act) := trans (m := projT1 pM) (q, select I sym) in
(q', fill_default I (None, N) act).
Definition LiftTapes_TM : mTM sig n :=
{|
trans := LiftTapes_trans;
start := start (projT1 pM);
halt := halt (m := projT1 pM);
|}.
Definition LiftTapes : pTM sig F n := (LiftTapes_TM; projT2 pM).
Definition selectConf : mconfig sig (states LiftTapes_TM) n -> mconfig sig (states (projT1 pM)) m :=
fun c => mk_mconfig (cstate c) (select I (ctapes c)).
Lemma current_chars_select (t : tapes sig n) :
current_chars (select I t) = select I (current_chars t).
Proof. unfold current_chars, select. apply Vector.eq_nth_iff; intros i ? <-. now simpl_tape. Qed.
Lemma doAct_select (t : tapes sig n) act :
doAct_multi (select I t) act = select I (doAct_multi t (fill_default I (None, N) act)).
Proof.
unfold doAct_multi, select. apply Vector.eq_nth_iff; intros i ? <-. simpl_tape.
unfold fill_default. f_equal. symmetry. now apply fill_correct_nth.
Qed.
Lemma LiftTapes_comp_step (c1 : mconfig sig (states (projT1 pM)) n) :
step (M := projT1 pM) (selectConf c1) = selectConf (step (M := LiftTapes_TM) c1).
Proof.
unfold selectConf. unfold step; cbn.
destruct c1 as [q t] eqn:E1.
unfold step in *. cbn -[current_chars doAct_multi] in *.
rewrite current_chars_select.
destruct (trans (q, select I (current_chars t))) as (q', act) eqn:E; cbn.
f_equal. apply doAct_select.
Qed.
Lemma LiftTapes_lift (c1 c2 : mconfig sig (states LiftTapes_TM) n) (k : nat) :
loopM (M := LiftTapes_TM) c1 k = Some c2 ->
loopM (M := projT1 pM) (selectConf c1) k = Some (selectConf c2).
Proof.
intros HLoop.
eapply loop_lift with (f := step (M := LiftTapes_TM)) (h := haltConf (M := LiftTapes_TM)).
- cbn. auto.
- intros ? _. now apply LiftTapes_comp_step.
- apply HLoop.
Qed.
Lemma LiftTapes_comp_eq (c1 c2 : mconfig sig (states LiftTapes_TM) n) (i : Fin.t n) :
not_index I i ->
step (M := LiftTapes_TM) c1 = c2 ->
(ctapes c2)[@i] = (ctapes c1)[@i].
Proof.
intros HI H. unfold LiftTapes_TM in *.
destruct c1 as [state1 tapes1] eqn:E1, c2 as [state2 tapes2] eqn:E2.
unfold step, select in *. cbn in *.
destruct (trans (state1, select I (current_chars tapes1))) as (q, act) eqn:E3.
inv H. erewrite Vector.nth_map2; eauto. now rewrite fill_default_not_index.
Qed.
Lemma LiftTapes_eq (c1 c2 : mconfig sig (states LiftTapes_TM) n) (k : nat) (i : Fin.t n) :
not_index I i ->
loopM (M := LiftTapes_TM) c1 k = Some c2 ->
(ctapes c2)[@i] = (ctapes c1)[@i].
Proof.
intros Hi HLoop. unfold loopM in HLoop.
eapply loop_map with (g := fun c => (ctapes c)[@i]); eauto.
intros. now apply LiftTapes_comp_eq.
Qed.
Lemma LiftTapes_Realise (R : Rel (tapes sig m) (F * tapes sig m)) :
pM ⊨ R ->
LiftTapes ⊨ LiftTapes_Rel I R.
Proof.
intros H. split.
- apply (H (select I t) k (selectConf outc)).
now apply (@LiftTapes_lift (initc LiftTapes_TM t) outc k).
- hnf. intros i HI. now apply (@LiftTapes_eq (initc LiftTapes_TM t) outc k i HI).
Qed.
Lemma LiftTapes_unlift (k : nat)
(c1 : mconfig sig (states (LiftTapes_TM)) n)
(c2 : mconfig sig (states (LiftTapes_TM)) m) :
loopM (M := projT1 pM) (selectConf c1) k = Some c2 ->
exists c2' : mconfig sig (states (LiftTapes_TM)) n,
loopM (M := LiftTapes_TM) c1 k = Some c2' /\
c2 = selectConf c2'.
Proof.
intros HLoop. unfold loopM in *. cbn in *.
apply loop_unlift with (lift:=selectConf) (f:=step (M:=LiftTapes_TM)) (h:=haltConf (M:=LiftTapes_TM)) in HLoop as (c'&HLoop&->).
- exists c'. split; auto.
- auto.
- intros ? _. apply LiftTapes_comp_step.
Qed.
Lemma LiftTapes_Terminates T :
projT1 pM ↓ T ->
projT1 LiftTapes ↓ LiftTapes_T I T.
Proof.
intros H initTapes k Term. hnf in *.
specialize (H (select I initTapes) k Term) as (outc&H).
pose proof (@LiftTapes_unlift k (initc LiftTapes_TM initTapes) outc H) as (X&X'&->). eauto.
Qed.
Lemma LiftTapes_RealiseIn R k :
pM ⊨c(k) R ->
LiftTapes ⊨c(k) LiftTapes_Rel I R.
Proof.
intros (H1&H2) % Realise_total. apply Realise_total. split.
- now apply LiftTapes_Realise.
- eapply TerminatesIn_monotone.
+ apply LiftTapes_Terminates; eauto.
+ firstorder.
Qed.
End LiftNM.
Arguments LiftTapes : simpl never.
Section AddTapes.
Variable n : nat.
Eval simpl in Fin.L 4 (Fin1 : Fin.t 10).
Check @Fin.L.
Search Fin.L.
Eval simpl in Fin.R 4 (Fin1 : Fin.t 10).
Check @Fin.R.
Search Fin.R.
Lemma Fin_L_fillive (m : nat) (i1 i2 : Fin.t n) :
Fin.L m i1 = Fin.L m i2 -> i1 = i2.
Proof.
induction n as [ | n' IH].
- dependent destruct i1.
- dependent destruct i1; dependent destruct i2; cbn in *; auto; try congruence.
apply Fin.FS_inj in H. now apply IH in H as ->.
Qed.
Lemma Fin_R_fillive (m : nat) (i1 i2 : Fin.t n) :
Fin.R m i1 = Fin.R m i2 -> i1 = i2.
Proof.
induction m as [ | n' IH]; cbn.
- auto.
- intros H % Fin.FS_inj. auto.
Qed.
Definition add_tapes (m : nat) : Vector.t (Fin.t (m + n)) n :=
Vector.map (fun k => Fin.R m k) (Fin_initVect _).
Lemma add_tapes_dupfree (m : nat) : dupfree (add_tapes m).
Proof.
apply dupfree_map_injective.
- apply Fin_R_fillive.
- apply Fin_initVect_dupfree.
Qed.
Lemma add_tapes_select_nth (X : Type) (m : nat) (ts : Vector.t X (m + n)) k :
(select (add_tapes m) ts)[@k] = ts[@Fin.R m k].
Proof.
unfold add_tapes. unfold select. erewrite !VectorSpec.nth_map; eauto.
cbn. now rewrite Fin_initVect_nth.
Qed.
Definition app_tapes (m : nat) : Vector.t (Fin.t (n + m)) n :=
Vector.map (Fin.L _) (Fin_initVect _).
Lemma app_tapes_dupfree (m : nat) : dupfree (app_tapes m).
Proof.
apply dupfree_map_injective.
- apply Fin_L_fillive.
- apply Fin_initVect_dupfree.
Qed.
Lemma app_tapes_select_nth (X : Type) (m : nat) (ts : Vector.t X (n + m)) k :
(select (app_tapes m) ts)[@k] = ts[@Fin.L m k].
Proof.
unfold app_tapes. unfold select. erewrite !VectorSpec.nth_map; eauto.
cbn. now rewrite Fin_initVect_nth.
Qed.
End AddTapes.
match I with
| Vector.nil _ => fun init V => init
| Vector.cons _ i m' I' =>
fun init V =>
Vector.replace (fill I' init (Vector.tl V)) i (V[@Fin0])
end.
Variable m n : nat.
Implicit Types (i : Fin.t n) (j : Fin.t m).
Implicit Types (I : Vector.t (Fin.t n) m) (init : Vector.t X n) (V : Vector.t X m).
Lemma fill_correct_nth I init V i j :
dupfree I ->
I[@j] = i ->
(fill I init V)[@i] = V[@j].
Proof.
intros HDup Heq. revert V. induction HDup as [ | m index I' H1 H2 IH]; intros; cbn in *.
- exfalso. clear i Heq V. now apply fin_destruct_O in j.
- pose proof destruct_vector_cons V as (v&V'&->).
pose proof fin_destruct_S j as [(j'&?) | ? ]; cbn in *; subst; cbn in *.
+ decide (index = I'[@j']) as [ -> | Hneq].
* contradict H1. eapply vect_nth_In; eauto.
* rewrite replace_nth2; auto.
+ apply replace_nth.
Qed.
Lemma fill_not_index I init V (i : Fin.t n) :
dupfree I ->
not_index I i ->
(fill I init V)[@i] = init[@i].
Proof.
intros HDupfree. revert V i. induction HDupfree as [ | m index I' H1 H2 IH]; intros; cbn in *.
- reflexivity.
- pose proof destruct_vector_cons V as (v&V'&->).
unfold not_index in *.
decide (index = i) as [ -> | Hneq].
+ exfalso. contradict H. constructor.
+ rewrite replace_nth2; eauto. apply IH; auto.
{ intros ?. contradict H. now constructor. }
Qed.
Definition fill_default I (def : X) V :=
fill I (Vector.const def n) V.
Corollary fill_default_not_index I V def i :
dupfree I ->
not_index I i ->
(fill_default I def V)[@i] = def.
Proof. intros. unfold fill_default. rewrite fill_not_index; auto. apply Vector.const_nth. Qed.
End Fill.
Section loop_map.
Variable A B : Type.
Variable (f : A -> A) (h : A -> bool) (g : A -> B).
Hypothesis step_map_comp : forall a, g (f a) = g a.
Lemma loop_map k a1 a2 :
loop f h a1 k = Some a2 ->
g a2 = g a1.
Proof.
revert a1 a2. induction k as [ | k' IH]; intros; cbn in *.
- destruct (h a1); now inv H.
- destruct (h a1).
+ now inv H.
+ apply IH in H. now rewrite step_map_comp in H.
Qed.
End loop_map.
Section LiftNM.
Variable sig : finType.
Variable m n : nat.
Variable F : finType.
Variable pM : pTM sig F m.
Variable I : Vector.t ((Fin.t n)) m.
Variable I_dupfree : dupfree I.
Definition LiftTapes_trans :=
fun '(q, sym ) =>
let (q', act) := trans (m := projT1 pM) (q, select I sym) in
(q', fill_default I (None, N) act).
Definition LiftTapes_TM : mTM sig n :=
{|
trans := LiftTapes_trans;
start := start (projT1 pM);
halt := halt (m := projT1 pM);
|}.
Definition LiftTapes : pTM sig F n := (LiftTapes_TM; projT2 pM).
Definition selectConf : mconfig sig (states LiftTapes_TM) n -> mconfig sig (states (projT1 pM)) m :=
fun c => mk_mconfig (cstate c) (select I (ctapes c)).
Lemma current_chars_select (t : tapes sig n) :
current_chars (select I t) = select I (current_chars t).
Proof. unfold current_chars, select. apply Vector.eq_nth_iff; intros i ? <-. now simpl_tape. Qed.
Lemma doAct_select (t : tapes sig n) act :
doAct_multi (select I t) act = select I (doAct_multi t (fill_default I (None, N) act)).
Proof.
unfold doAct_multi, select. apply Vector.eq_nth_iff; intros i ? <-. simpl_tape.
unfold fill_default. f_equal. symmetry. now apply fill_correct_nth.
Qed.
Lemma LiftTapes_comp_step (c1 : mconfig sig (states (projT1 pM)) n) :
step (M := projT1 pM) (selectConf c1) = selectConf (step (M := LiftTapes_TM) c1).
Proof.
unfold selectConf. unfold step; cbn.
destruct c1 as [q t] eqn:E1.
unfold step in *. cbn -[current_chars doAct_multi] in *.
rewrite current_chars_select.
destruct (trans (q, select I (current_chars t))) as (q', act) eqn:E; cbn.
f_equal. apply doAct_select.
Qed.
Lemma LiftTapes_lift (c1 c2 : mconfig sig (states LiftTapes_TM) n) (k : nat) :
loopM (M := LiftTapes_TM) c1 k = Some c2 ->
loopM (M := projT1 pM) (selectConf c1) k = Some (selectConf c2).
Proof.
intros HLoop.
eapply loop_lift with (f := step (M := LiftTapes_TM)) (h := haltConf (M := LiftTapes_TM)).
- cbn. auto.
- intros ? _. now apply LiftTapes_comp_step.
- apply HLoop.
Qed.
Lemma LiftTapes_comp_eq (c1 c2 : mconfig sig (states LiftTapes_TM) n) (i : Fin.t n) :
not_index I i ->
step (M := LiftTapes_TM) c1 = c2 ->
(ctapes c2)[@i] = (ctapes c1)[@i].
Proof.
intros HI H. unfold LiftTapes_TM in *.
destruct c1 as [state1 tapes1] eqn:E1, c2 as [state2 tapes2] eqn:E2.
unfold step, select in *. cbn in *.
destruct (trans (state1, select I (current_chars tapes1))) as (q, act) eqn:E3.
inv H. erewrite Vector.nth_map2; eauto. now rewrite fill_default_not_index.
Qed.
Lemma LiftTapes_eq (c1 c2 : mconfig sig (states LiftTapes_TM) n) (k : nat) (i : Fin.t n) :
not_index I i ->
loopM (M := LiftTapes_TM) c1 k = Some c2 ->
(ctapes c2)[@i] = (ctapes c1)[@i].
Proof.
intros Hi HLoop. unfold loopM in HLoop.
eapply loop_map with (g := fun c => (ctapes c)[@i]); eauto.
intros. now apply LiftTapes_comp_eq.
Qed.
Lemma LiftTapes_Realise (R : Rel (tapes sig m) (F * tapes sig m)) :
pM ⊨ R ->
LiftTapes ⊨ LiftTapes_Rel I R.
Proof.
intros H. split.
- apply (H (select I t) k (selectConf outc)).
now apply (@LiftTapes_lift (initc LiftTapes_TM t) outc k).
- hnf. intros i HI. now apply (@LiftTapes_eq (initc LiftTapes_TM t) outc k i HI).
Qed.
Lemma LiftTapes_unlift (k : nat)
(c1 : mconfig sig (states (LiftTapes_TM)) n)
(c2 : mconfig sig (states (LiftTapes_TM)) m) :
loopM (M := projT1 pM) (selectConf c1) k = Some c2 ->
exists c2' : mconfig sig (states (LiftTapes_TM)) n,
loopM (M := LiftTapes_TM) c1 k = Some c2' /\
c2 = selectConf c2'.
Proof.
intros HLoop. unfold loopM in *. cbn in *.
apply loop_unlift with (lift:=selectConf) (f:=step (M:=LiftTapes_TM)) (h:=haltConf (M:=LiftTapes_TM)) in HLoop as (c'&HLoop&->).
- exists c'. split; auto.
- auto.
- intros ? _. apply LiftTapes_comp_step.
Qed.
Lemma LiftTapes_Terminates T :
projT1 pM ↓ T ->
projT1 LiftTapes ↓ LiftTapes_T I T.
Proof.
intros H initTapes k Term. hnf in *.
specialize (H (select I initTapes) k Term) as (outc&H).
pose proof (@LiftTapes_unlift k (initc LiftTapes_TM initTapes) outc H) as (X&X'&->). eauto.
Qed.
Lemma LiftTapes_RealiseIn R k :
pM ⊨c(k) R ->
LiftTapes ⊨c(k) LiftTapes_Rel I R.
Proof.
intros (H1&H2) % Realise_total. apply Realise_total. split.
- now apply LiftTapes_Realise.
- eapply TerminatesIn_monotone.
+ apply LiftTapes_Terminates; eauto.
+ firstorder.
Qed.
End LiftNM.
Arguments LiftTapes : simpl never.
Section AddTapes.
Variable n : nat.
Eval simpl in Fin.L 4 (Fin1 : Fin.t 10).
Check @Fin.L.
Search Fin.L.
Eval simpl in Fin.R 4 (Fin1 : Fin.t 10).
Check @Fin.R.
Search Fin.R.
Lemma Fin_L_fillive (m : nat) (i1 i2 : Fin.t n) :
Fin.L m i1 = Fin.L m i2 -> i1 = i2.
Proof.
induction n as [ | n' IH].
- dependent destruct i1.
- dependent destruct i1; dependent destruct i2; cbn in *; auto; try congruence.
apply Fin.FS_inj in H. now apply IH in H as ->.
Qed.
Lemma Fin_R_fillive (m : nat) (i1 i2 : Fin.t n) :
Fin.R m i1 = Fin.R m i2 -> i1 = i2.
Proof.
induction m as [ | n' IH]; cbn.
- auto.
- intros H % Fin.FS_inj. auto.
Qed.
Definition add_tapes (m : nat) : Vector.t (Fin.t (m + n)) n :=
Vector.map (fun k => Fin.R m k) (Fin_initVect _).
Lemma add_tapes_dupfree (m : nat) : dupfree (add_tapes m).
Proof.
apply dupfree_map_injective.
- apply Fin_R_fillive.
- apply Fin_initVect_dupfree.
Qed.
Lemma add_tapes_select_nth (X : Type) (m : nat) (ts : Vector.t X (m + n)) k :
(select (add_tapes m) ts)[@k] = ts[@Fin.R m k].
Proof.
unfold add_tapes. unfold select. erewrite !VectorSpec.nth_map; eauto.
cbn. now rewrite Fin_initVect_nth.
Qed.
Definition app_tapes (m : nat) : Vector.t (Fin.t (n + m)) n :=
Vector.map (Fin.L _) (Fin_initVect _).
Lemma app_tapes_dupfree (m : nat) : dupfree (app_tapes m).
Proof.
apply dupfree_map_injective.
- apply Fin_L_fillive.
- apply Fin_initVect_dupfree.
Qed.
Lemma app_tapes_select_nth (X : Type) (m : nat) (ts : Vector.t X (n + m)) k :
(select (app_tapes m) ts)[@k] = ts[@Fin.L m k].
Proof.
unfold app_tapes. unfold select. erewrite !VectorSpec.nth_map; eauto.
cbn. now rewrite Fin_initVect_nth.
Qed.
End AddTapes.
Lemma smpl_dupfree_helper1 (n : nat) :
dupfree [|Fin.F1 (n := n)|].
Proof. vector_dupfree. Qed.
Lemma smpl_dupfree_helper2 (n : nat) :
dupfree [|Fin.FS (Fin.F1 (n := n))|].
Proof. vector_dupfree. Qed.
Ltac smpl_dupfree :=
lazymatch goal with
| [ |- dupfree [|Fin.F1 |] ] => apply smpl_dupfree_helper1
| [ |- dupfree [|Fin.FS |] ] => apply smpl_dupfree_helper2
| [ |- dupfree (add_tapes _ _)] => apply add_tapes_dupfree
| [ |- dupfree (app_tapes _ _)] => apply app_tapes_dupfree
| [ |- dupfree _ ] => now vector_dupfree
end.
Ltac smpl_TM_LiftN :=
lazymatch goal with
| [ |- LiftTapes _ _ ⊨ _] =>
apply LiftTapes_Realise; [ smpl_dupfree | ]
| [ |- LiftTapes _ _ ⊨c(_) _] => apply LiftTapes_RealiseIn; [ smpl_dupfree | ]
| [ |- projT1 (LiftTapes _ _) ↓ _] => apply LiftTapes_Terminates; [ smpl_dupfree | ]
end.
Smpl Add smpl_TM_LiftN : TM_Correct.
Ltac is_num_const n :=
lazymatch n with
| O => idtac
| S ?n => is_num_const n
| _ => fail "Not a number"
end.
Ltac do_n_times n t :=
match n with
| O => idtac
| (S ?n') =>
t 0;
do_n_times n' ltac:(fun i => let next := constr:(S i) in t next)
end.
Ltac do_n_times_fin_rect n m t :=
lazymatch n with
| O => idtac
| S ?n' =>
let m' := eval simpl in (pred m) in
let one := eval simpl in (@Fin.F1 _ : Fin.t m) in
t one;
do_n_times_fin_rect n' m' ltac:(fun i => let next := eval simpl in (Fin.FS i) in t next)
end.
Ltac do_n_times_fin n t := do_n_times_fin_rect n n t.
Ltac simpl_not_in_add_tapes_step H m' :=
let H' := fresh "HIndex_" H in
unshelve epose proof (H ltac:(getFin m') _) as H';
[ hnf; unfold add_tapes, Fin_initVect; cbn [tabulate Vector.map Fin.L Fin.R]; vector_not_in
| cbn [Fin.L Fin.R] in H'
].
Ltac simpl_not_in_add_tapes_loop H m :=
do_n_times m ltac:(simpl_not_in_add_tapes_step H); clear H.
Ltac simpl_not_in_add_tapes_one :=
lazymatch goal with
| [ H : forall i : Fin.t _, not_index (add_tapes _ ?m) i -> _ |- _] =>
simpl_not_in_add_tapes_loop H m; clear H
| [ H : context [ (select (add_tapes _ ?m) _)[@_]] |- _ ] =>
rewrite ! (add_tapes_select_nth (m := m)) in H; cbn in H
| [ |- context [ (select (add_tapes _ ?m) _)[@_]] ] =>
rewrite ! (add_tapes_select_nth (m := m)); cbn
end.
Ltac simpl_not_in_add_tapes := repeat simpl_not_in_add_tapes_one.
Goal True.
assert (forall i : Fin.t 3, not_index (add_tapes _ 2) i -> i = i) by firstorder.
simpl_not_in_add_tapes. Abort.
Goal True.
assert (n : nat) by constructor.
assert (forall i : Fin.t (S n), not_index (add_tapes n 1) i -> True) by firstorder.
simpl_not_in_add_tapes.
Abort.
Ltac simpl_not_in_app_tapes_step H n m' :=
let H' := fresh "HIndex_" H in
unshelve epose proof (H (Fin.R n ltac:(getFin m')) _) as H';
[ hnf; unfold app_tapes, Fin_initVect; cbn [tabulate Vector.map Fin.L Fin.R]; vector_not_in
| cbn [Fin.L Fin.R] in H'
].
Ltac simpl_not_in_app_tapes_loop H n m :=
do_n_times m ltac:(fun m' => simpl_not_in_app_tapes_step H n m'); clear H.
Ltac simpl_not_in_app_tapes_one :=
lazymatch goal with
| [ H : forall i : Fin.t _, not_index (app_tapes ?n ?m) i -> _ |- _] =>
simpl_not_in_app_tapes_loop H n m; clear H
| [ H : context [ (select (app_tapes ?n ?m) _)[@_]] |- _ ] =>
rewrite ! (app_tapes_select_nth (n := n) (m := m)) in H; cbn in H
| [ |- context [ (select (app_tapes ?n ?m) _)[@_]] ] =>
rewrite ! (app_tapes_select_nth (n := n) (m := m)); cbn
end.
Ltac simpl_not_in_app_tapes := repeat simpl_not_in_app_tapes_one.
Goal True.
assert (forall i : Fin.t 10, not_index (app_tapes 8 _) i -> i = i) as Inj by firstorder.
simpl_not_in_app_tapes.
Check HIndex_Inj : Fin8 = Fin8.
Check HIndex_Inj0 : Fin9 = Fin9.
Fail Check HInj.
Abort.
Ltac vector_contains a vect :=
lazymatch vect with
| @Vector.nil ?A => fail "Vector doesn't contain" a
| @Vector.cons ?A a ?n ?vect' => idtac
| @Vector.cons ?A ?b ?n ?vect' => vector_contains a vect'
| _ => fail "No vector" vect
end.
Fail Check ltac:(vector_contains 42 (@Vector.nil nat); idtac "yes!").
Check ltac:(vector_contains 42 [|4;8;15;16;23;42|]; idtac "yes!").
Ltac vector_doesnt_contain a vect :=
tryif vector_contains a vect then fail "Vector DOES contain" a else idtac.
Check ltac:(vector_doesnt_contain 42 (@Vector.nil nat); idtac "yes!").
Check ltac:(vector_doesnt_contain 9 [|4;8;15;16;23;42|]; idtac "yes!").
Fail Check ltac:(vector_doesnt_contain 42 [|4;8;15;16;23;42|]; idtac "yes!").
Ltac simpl_not_in_vector_step H vect n m' :=
let H' := fresh H "_" in
tryif vector_contains m' vect
then idtac
else pose proof (H m' ltac:(vector_not_in)) as H'.
Ltac simpl_not_in_vector_loop H vect n :=
let H' := fresh H "_" in
pose proof I as H';
do_n_times_fin n ltac:(fun m' => simpl_not_in_vector_step H vect n m');
clear H'.
Ltac simpl_not_in_vector_one :=
lazymatch goal with
| [ H : forall i : Fin.t ?n, not_index ?vect i -> _ |- _ ] =>
simpl_not_in_vector_loop H vect n; clear H
end.
Ltac simpl_not_in_vector := repeat simpl_not_in_vector_one.
Goal True.
assert (forall i : Fin.t 10, not_index [|Fin8; Fin1; Fin2; Fin3|] i -> i = i) as HInj by firstorder.
simpl_not_in_vector_one.
Fail Check HInj.
Show Proof.
Check (HInj_0 : Fin0 = Fin0).
Check (HInj_1 : Fin4 = Fin4).
Check (HInj_2 : Fin5 = Fin5).
Check (HInj_3 : Fin6 = Fin6).
Check (HInj_4 : Fin7 = Fin7).
Check (HInj_5 : Fin9 = Fin9).
Abort.
Ltac simpl_not_in :=
repeat match goal with
| _ => progress simpl_not_in_add_tapes
| _ => progress simpl_not_in_app_tapes
| _ => progress simpl_not_in_vector
end.