Require Import L Template.All.
Require Import Shared.Base StringBase Ascii.
Require Import String.
Open Scope string_scope.
Import MonadNotation.
Require Import Shared.Base StringBase Ascii.
Require Import String.
Open Scope string_scope.
Import MonadNotation.
Auxiliary functions
Definition string_of_int n :=
match n with
| 0 => "0"
| 1 => "1"
| 2 => "2"
| 3 => "3"
| 4 => "4"
| 5 => "5"
| 6 => "6"
| 7 => "7"
| 8 => "8"
| 9 => "9"
| _ => "todo string_of_int"
end.
(* it with acces to i *)
Section it_i.
Variables (X: Type) (f: nat -> X -> X).
Fixpoint it_i' (i : nat) (n : nat) (x : X) : X :=
match n with
| 0 => x
| S n' => f i (it_i' (S i) n' x)
end.
Definition it_i := it_i' 0.
End it_i.
match n with
| 0 => "0"
| 1 => "1"
| 2 => "2"
| 3 => "3"
| 4 => "4"
| 5 => "5"
| 6 => "6"
| 7 => "7"
| 8 => "8"
| 9 => "9"
| _ => "todo string_of_int"
end.
(* it with acces to i *)
Section it_i.
Variables (X: Type) (f: nat -> X -> X).
Fixpoint it_i' (i : nat) (n : nat) (x : X) : X :=
match n with
| 0 => x
| S n' => f i (it_i' (S i) n' x)
end.
Definition it_i := it_i' 0.
End it_i.
apply all functions in a list of functions from right to left
Auxiliary monadic functions
Get the head of a list
Definition hd {X : Type} (l : list X) : TemplateMonad X :=
match l with
| nil => tmFail "hd: empty list"
| x :: _ => ret x
end.
match l with
| nil => tmFail "hd: empty list"
| x :: _ => ret x
end.
Get the type of a quoted term
Try to infer instance, otherwise make lemma
Definition tmTryInfer (n : ident) (red : option reductionStrategy) (A : Type) : TemplateMonad A :=
r <- tmInferInstance red A ;;
match r with
| Some i => ret i
| None =>
A' <- match red with Some red => ret A | None => ret A end;;
tmPrint "Did not find an instance for ";;
(tmPrint A');;
(tmEval cbv ("open obligation " ++ n ++ " for it. You might want to register a instance before and rerun this.") >>= tmPrint);;
tmLemmaRed n red A
end.
r <- tmInferInstance red A ;;
match r with
| Some i => ret i
| None =>
A' <- match red with Some red => ret A | None => ret A end;;
tmPrint "Did not find an instance for ";;
(tmPrint A');;
(tmEval cbv ("open obligation " ++ n ++ " for it. You might want to register a instance before and rerun this.") >>= tmPrint);;
tmLemmaRed n red A
end.
Generate a name for a quoted term
Definition name_of (t : Ast.term) : ident :=
match t with
tConst n _ => name_after_dot n
| tConstruct (mkInd n _) i _ => "cnstr_" ++ name_after_dot n ++ string_of_int i
| tInd (mkInd n _) _ => "type_" ++ name_after_dot n
| tVar i => "var_" ++ i
| _ => "no_name"
end.
match t with
tConst n _ => name_after_dot n
| tConstruct (mkInd n _) i _ => "cnstr_" ++ name_after_dot n ++ string_of_int i
| tInd (mkInd n _) _ => "type_" ++ name_after_dot n
| tVar i => "var_" ++ i
| _ => "no_name"
end.
Check whether a list of quoted terms starts with a type
Fixpoint tmIsType (s : Ast.term) : TemplateMonad bool :=
match s with
| tInd _ _ => ret true
| tConst n u => t <- tmTypeOf (tConst n u) ;; match t with tSort _ => ret true | _ => ret false end
| tVar x => t <- tmTypeOf (tVar x) ;; match t with tSort _ => ret true | _ => ret false end
| tApp h _ => tmIsType h
| _ => ret false
end.
match s with
| tInd _ _ => ret true
| tConst n u => t <- tmTypeOf (tConst n u) ;; match t with tSort _ => ret true | _ => ret false end
| tVar x => t <- tmTypeOf (tVar x) ;; match t with tSort _ => ret true | _ => ret false end
| tApp h _ => tmIsType h
| _ => ret false
end.
Get the number of constructors for an inductive type
Definition tmNumConstructors (n : kername) : TemplateMonad nat :=
i <- tmQuoteInductive n ;;
match ind_bodies i with
[ i ] => tmEval cbv (| ind_ctors i |)
| _ => tmFail "Mutual inductive types are not supported"
end.
i <- tmQuoteInductive n ;;
match ind_bodies i with
[ i ] => tmEval cbv (| ind_ctors i |)
| _ => tmFail "Mutual inductive types are not supported"
end.
Get all argument types for a type
Fixpoint argument_types (B : Ast.term) :=
match B with
| tProd _ A B => A :: argument_types B
| _ => []
end.
match B with
| tProd _ A B => A :: argument_types B
| _ => []
end.
Split an inductive types applied to parameters into the naked inductive, the number of parameters and the list of parameters
Definition split_head_symbol A : option (inductive * list term) :=
match A with
| tApp (tInd ind u) R => ret (ind, R)
| tInd ind u => ret (ind, [])
| _ => None
end.
match A with
| tApp (tInd ind u) R => ret (ind, R)
| tInd ind u => ret (ind, [])
| _ => None
end.
Get the list of consturcors for an inductive type (name, quoted term, number of arguments)
Definition list_constructors (ind : inductive) : TemplateMonad (list (ident * term * nat)) :=
A <- tmQuoteInductive (inductive_mind ind) ;;
match ind_bodies A with
| [ B ] => ret (ind_ctors B)
| _ => tmFail "error: no mutual inductives supported"
end.
A <- tmQuoteInductive (inductive_mind ind) ;;
match ind_bodies A with
| [ B ] => ret (ind_ctors B)
| _ => tmFail "error: no mutual inductives supported"
end.
determine whether two inductives are equal, based on their name
Definition eq_inductive (hs hs2 : inductive) :=
match hs, hs2 with
| mkInd k _, mkInd k2 _ => if string_dec k k2 then true else false
end.
match hs, hs2 with
| mkInd k _, mkInd k2 _ => if string_dec k k2 then true else false
end.
Get the argument types for a constructor (specified by inductive and index)
Definition tmArgsOfConstructor ind i :=
A <- tmTypeOf (tConstruct ind i []) ;;
ret (argument_types A).
A <- tmTypeOf (tConstruct ind i []) ;;
ret (argument_types A).
Classes for computable terms and (Scott-) encodable types
Class extracted {A : Type} (a : A) := int_ext : L.term.
Arguments int_ext {_} _ {_}.
Typeclasses Transparent extracted. (* This is crucial to use this inside monads *)
Class encodable (A : Type) := enc_f : A -> L.term.
Construct quoted L terms and natural numbers
Quote Definition tTerm := L.term.
Definition mkLam x := tApp (tConstruct (mkInd "L.L.term" 0) 2 []) [x].
Definition mkVar x := tApp (tConstruct (mkInd "L.L.term" 0) 0 []) [x].
Definition mkApp x y := tApp (tConstruct (mkInd "L.L.term" 0) 1 []) [x; y].
Definition mkAppList s B := fold_left (fun a b => mkApp a b) B s.
Quote Definition mkZero := 0.
Quote Definition mkSucc := S.
Fixpoint mkNat n := match n with
| 0 => mkZero
| S n => tApp mkSucc [mkNat n]
end.
Fixpoint insert_params fuel Params i t :=
let params := List.length Params in
match fuel with 0 => tmFail "out of fuel in insert_params" | S fuel =>
match t with
| tRel n => (match nth_error Params (params + i - n - 1) with Some x => ret x | _ => ret (tRel n) end)
| tApp s R => s <- insert_params fuel Params i s ;;
R <- monad_map (insert_params fuel Params i) R;;
ret (tApp s R)
| _ => ret t
end end.
Definition tmGetOption {X} (o : option X) (err : string) : TemplateMonad X :=
match o with
| Some x => ret x
| None => tmFail err
end.
Definition mkFixMatch (f x : ident) (t1 t2 : Ast.term) (cases : nat -> list term -> TemplateMonad term) :=
hs_num <- tmGetOption (split_head_symbol t1) "no head symbol found";;
let '(ind, Params) := hs_num in
let params := List.length Params in
L <- list_constructors ind >>= tmEval hnf ;;
body <- monad_map_i (fun i '(n, s, args) =>
l <- tmArgsOfConstructor ind i ;;
l' <- monad_map_i (insert_params FUEL Params) (skipn params l) ;;
t <- cases i l' ;; ret (args, t)) L ;;
ret (Ast.tFix [BasicAst.mkdef
Ast.term
(nNamed f)
(tProd nAnon t1 t2)
(tLambda (nNamed x) t1 (tCase (ind, params)
(tLambda nAnon t1 t2)
(tRel 0)
body)) 0] 0).
Definition encode_arguments (B : term) (a i : nat) A_j :=
if eq_term init_graph B A_j
then (* insert a recursive call *)
ret (tApp (tRel (S a)) [tRel (a - i -1)])
else (* insert a call to the appropriate encoding function *)
A <- tmUnquoteTyped Type A_j ;;
name <- (tmEval cbv (name_of A_j ++ "_term") >>= tmFreshName) ;;
E <- tmTryInfer name None (encodable A);;
t <- tmEval hnf (@enc_f A E);;
l <- tmQuote t;;
ret (tApp l [tRel (a - i - 1) ]).
Definition tmEncode (name : ident) (A : Type) :=
t <- (tmEval hnf A >>= tmQuote) ;;
hs_num <- tmGetOption (split_head_symbol t) "no inductive";;
let '(ind, Params) := hs_num in
num <- tmNumConstructors (inductive_mind ind) ;;
f <- tmFreshName "encode" ;;
x <- tmFreshName "x" ;;
ter <- mkFixMatch f x t (* argument type *) tTerm (* return type *)
(fun i (* ctr index *) ctr_types (* ctr type *) =>
args <- tmEval cbv (|ctr_types|);;
C <- monad_map_i (encode_arguments t args) ctr_types ;;
ret (stack (map (tLambda (nAnon)) ctr_types)
(it mkLam num ((fun s => mkAppList s C) (mkVar (mkNat (num - i - 1))))))
) ;;
u <- tmUnquoteTyped (encodable A) ter;;
tmDefinitionRed name None u ;;
tmExistingInstance name;;
tmEval hnf u.
(* Commented out for less printing while compiling *)
(* Run TemplateProgram (tmEncode "unit_encode" unit >>= tmPrint). *)
(* Print unit_encode. *)
(* Run TemplateProgram (tmEncode "bool_encode" bool >>= tmPrint). *)
(* Print bool_encode. *)
(* Run TemplateProgram (tmEncode "nat_encode" nat >>= tmPrint). *)
(* Run TemplateProgram (tmEncode "term_encode" L.term >>= tmPrint). *)
(* Inductive triple (X Y Z : Type) : Type := *)
(* trip (x : X) (y : Y) (z : Z) : triple X Y Z. *)
(* Section encode. *)
(* Variable A B C : Type. *)
(* Context { encA : encodable A}. *)
(* Context { encB : encodable B}. *)
(* Context { encC : encodable C}. *)
(* Run TemplateProgram (tmEncode "prod_encode" (@prod A B) >>= tmPrint). *)
(* Run TemplateProgram (tmEncode "list_encode" (@list A) >>= tmPrint). *)
(* Run TemplateProgram (tmEncode "triple_encode" (@triple A B C) >>= tmPrint). *)
(* End encode. *)
(* Run TemplateProgram (tmEncode "unit_encode" unit >>= tmPrint). *)
(* Print unit_encode. *)
(* Run TemplateProgram (tmEncode "bool_encode" bool >>= tmPrint). *)
(* Print bool_encode. *)
(* Run TemplateProgram (tmEncode "nat_encode" nat >>= tmPrint). *)
(* Run TemplateProgram (tmEncode "term_encode" L.term >>= tmPrint). *)
(* Inductive triple (X Y Z : Type) : Type := *)
(* trip (x : X) (y : Y) (z : Z) : triple X Y Z. *)
(* Section encode. *)
(* Variable A B C : Type. *)
(* Context { encA : encodable A}. *)
(* Context { encB : encodable B}. *)
(* Context { encC : encodable C}. *)
(* Run TemplateProgram (tmEncode "prod_encode" (@prod A B) >>= tmPrint). *)
(* Run TemplateProgram (tmEncode "list_encode" (@list A) >>= tmPrint). *)
(* Run TemplateProgram (tmEncode "triple_encode" (@triple A B C) >>= tmPrint). *)
(* End encode. *)
Definition gen_constructor args num i :=
it lam args (it lam num (it_i (fun n s => app s (n + num)) args (var (num - i - 1)))).
Definition extract_constr {A} (a : A) (n : ident) (i : nat) (t : Ast.term) (def : option ident) :=
num <- tmNumConstructors n ;;
r <- tmEval cbv (gen_constructor (|argument_types t|) num i : extracted a) ;;
match def with
| Some def => def <- tmFreshName def ;;
tmDefinitionRed def None r ;;
tmExistingInstance def
| None => tmReturn tt
end;;
ret r.
Definition tmExtractConstr' (def : option ident) {A : Type} (a : A) :=
s <- (tmEval cbv a >>= tmQuote) ;;
t <- (tmEval hnf A >>= tmQuote) ;;
match s with
| Ast.tApp (Ast.tConstruct (mkInd n _) i _) _ =>
extract_constr a n i t def
| Ast.tConstruct (mkInd n _) i _ =>
extract_constr a n i t def
| _ => tmFail "this is not a constructor"
end.
Definition tmExtractConstr (def : ident) {A : Type} (a : A) :=
tmExtractConstr' (Some def) a.
(* Commented out for less printing while compiling *)
(* Section Fix_X. *)
(* Context {X : Set}. *)
(* Run TemplateProgram (tmExtractConstr "zero_term" 0 >>= tmPrint). *)
(* Print zero_term. *)
(* Run TemplateProgram (tmExtractConstr "S_term" S >>= tmPrint). *)
(* Run TemplateProgram (tmExtractConstr "nil_term" (@nil X) >>= tmPrint). *)
(* Run TemplateProgram (tmExtractConstr "cons_term" (@cons X) >>= tmPrint). *)
(* Print cons_term. *)
(* End Fix_X. *)
(* Section Fix_X. *)
(* Context {X : Set}. *)
(* Run TemplateProgram (tmExtractConstr "zero_term" 0 >>= tmPrint). *)
(* Print zero_term. *)
(* Run TemplateProgram (tmExtractConstr "S_term" S >>= tmPrint). *)
(* Run TemplateProgram (tmExtractConstr "nil_term" (@nil X) >>= tmPrint). *)
(* Run TemplateProgram (tmExtractConstr "cons_term" (@cons X) >>= tmPrint). *)
(* Print cons_term. *)
(* End Fix_X. *)
Notation "↑ env" := (fun n => match n with 0 => 0 | S n => S (env n) end) (at level 10).
Local Definition error {A} (a:A) := 1000.
Opaque error.
(*Get the free variables*)
Fixpoint freeVars (s:Ast.term) : list nat :=
match s with
tProd _ ty bd=>
freeVars ty ++ (List.concat (map (fun x => match x with 0 => [] | S n => [n] end) (freeVars bd)))
| tRel i => [i]
| tApp hd args =>
fold_left (fun l1 l2 =>List.app l1 (freeVars l2)) args (freeVars hd)
| tInd _ _ => []
| tSort _ => []
| tConstruct _ _ _ => []
| tConst _ _ => []
| _ => [error ("freeVars",s)]
end.
(*Get a term representing a type of form 'forall x1 ...xn, T' and returns the number of paramaters*)
Fixpoint dependentArgs (s:Ast.term) : nat :=
match s with
tProd _ ty bd=>
let l := dependentArgs bd in
match l with
S n => S l
| 0 => if existsb (fun x => x <=? 0) (freeVars bd) then 1 else 0
end
| _ => 0
end.
Definition tmDependentArgs x:=
match x with
Ast.tConst _ _ => t <- tmTypeOf x;;tmEval cbn (dependentArgs t) >>= ret
| Ast.tConstruct _ _ _ => t <- tmTypeOf x;;tmEval cbn (dependentArgs t) >>= ret
| Ast.tRel _ => ret 0
| Ast.tLambda _ _ _ => (*tmPrint ("tmDependentArgs currently assumes that abstractions on head position mean there are no parametric arguments");;*)ret 0
| _ => (*tmPrint ("tmDependentArgs not supported");;*)ret 0
end.
Fixpoint extract (env : nat -> nat) (s : Ast.term) (fuel : nat) : TemplateMonad L.term :=
match fuel with 0 => tmFail "out of fuel" | S fuel =>
match s with
Ast.tRel n =>
t <- tmEval cbv (var (env n));;
ret t
| Ast.tLambda _ _ s =>
t <- extract (↑ env) s fuel ;;
ret (lam t)
| Ast.tFix [BasicAst.mkdef _ nm ty s _] _ =>
t <- extract (fun n => S (env n)) (Ast.tLambda nm ty s) fuel ;;
ret (rho t)
| Ast.tApp s R =>
params <- tmDependentArgs s;;
if params =? 0 then
t <- extract env s fuel;;
monad_fold_left (fun t1 s2 => t2 <- extract env s2 fuel ;; ret (app t1 t2)) R t
else
let (P, L) := (firstn params R,skipn params R) in
s' <- tmEval cbv (Ast.tApp s P);;
(if closedn 0 s' then ret tt else tmPrint ("Can't extract ",s);;tmFail "The term contains variables as type parameters.");;
a <- tmUnquote s' ;;
a' <- tmEval cbn (my_projT2 a);;
nm <- (tmEval cbv (String.append (name_of s) "_term") >>= tmFreshName) ;;
i <- tmTryInfer nm (Some cbn) (extracted a') ;;
let t := (@int_ext _ _ i) in
monad_fold_left (fun t1 s2 => t2 <- extract env s2 fuel ;; ret (app t1 t2)) L t
| Ast.tConst n _ =>
a <- tmUnquote s ;;
a' <- tmEval cbn (my_projT2 a);;
n <- (tmEval cbv (String.append (name_of s) "_term") >>= tmFreshName) ;;
i <- tmTryInfer n (Some cbn) (extracted a') ;;
ret (@int_ext _ _ i)
| Ast.tConstruct (mkInd n _) _ _ =>
a <- tmUnquote s ;;
a' <- tmEval cbn (my_projT2 a);;
nm <- (tmEval cbv (String.append (name_of s) "_term") >>= tmFreshName) ;;
i <- tmTryInfer nm (Some cbn) (extracted a') ;;
ret (@int_ext _ _ i)
| Ast.tCase _ _ s cases =>
t <- extract env s fuel ;;
monad_fold_left (fun t1 s2 => t2 <- extract env s2 fuel ;; ret (app t1 t2)) (map snd cases) t
| Ast.tLetIn _ s1 _ s2 =>
t1 <- extract env s1 fuel ;;
t2 <- extract (↑ env) s2 fuel ;;
ret( app (lam t2) t1)
| Ast.tFix _ _ => tmFail "Mutual Fixpoints are not supported"
| tVar _ => a <- tmUnquote s ;;
a' <- tmEval cbn (my_projT2 a);;
n <- (tmEval cbv (String.append (name_of s) "_term") >>= tmFreshName) ;;
i <- tmTryInfer n (Some cbn) (extracted a') ;;
ret (@int_ext _ _ i)
| tMeta _ => tmFail "tMeta is not supported"
| tEvar _ _ => tmFail "tEvar is not supported"
| tSort _ => tmFail "tSort is not supported"
| tCast _ _ _ => tmFail "tCast is not supported"
| tProd _ _ _ => tmFail "tProd is not supported"
| tInd _ _ => tmFail "tInd is not supported (probably there is a type not in prenex-normal form)"
| tProj _ _ => tmFail "tProj is not supported"
| tCoFix _ _ => tmFail "tCoFix is not supported"
end end.
Fixpoint head_of_const (t : term) :=
match t with
| tConst h _ => Some h
| tApp s _ => head_of_const s
| _ => None
end.
Definition tmUnfoldTerm {A}(a:A) :=
t <- tmQuote a;;
match head_of_const t with
| Some h => tmEval (unfold (name_after_dot h)) a >>=tmQuote
| _ => ret t
end.
Definition tmExtract (nm : option string) {A} (a : A) : TemplateMonad L.term :=
q <- tmUnfoldTerm a ;;
t <- extract (fun x => x) q FUEL ;;
match nm with
Some nm => nm <- tmFreshName nm ;;
@tmDefinitionRed nm None (extracted a) t ;;
tmExistingInstance nm;;ret t
| None => ret t
end.
Opaque extracted.
(* Commented out for less printing while compiling *)
(* Fixpoint ackermann n : nat -> nat := *)
(* match n with *)
(* 0 => S *)
(* | S n => fix ackermann_Sn m : nat := *)
(* match m with *)
(* 0 => ackermann n 1 *)
(* | S m => ackermann n (ackermann_Sn m) *)
(* end *)
(* end. *)
(* Run TemplateProgram (tmExtractConstr "tm_zero" 0). *)
(* Run TemplateProgram (tmExtractConstr "tm_succ" S). *)
(* Run TemplateProgram (tmExtract (Some "tm_ack") ackermann >>= tmPrint). *)
(* Print tm_ack. *)
(* Require Import Init.Nat. *)
(* Run TemplateProgram (tmExtract (Some "add_term") add ). *)
(* Print add_term. *)
(* Run TemplateProgram (tmExtract (Some "mult_term") mult). *)
(* Section extract. *)
(* Context { A B : Set }. *)
(* Context { encB : encodable B }. *)
(* Run TemplateProgram (tmExtract (Some "map_term") (@map A B) >>= tmPrint). *)
(* Print map_term. *)
(* Run TemplateProgram (tmExtract (Some "filter_term") (@filter A) >>= tmPrint). *)
(* Print filter_term. *)
(* End extract. *)
Global Obligation Tactic := idtac.
Typeclasses Transparent encodable.
(* Fixpoint ackermann n : nat -> nat := *)
(* match n with *)
(* 0 => S *)
(* | S n => fix ackermann_Sn m : nat := *)
(* match m with *)
(* 0 => ackermann n 1 *)
(* | S m => ackermann n (ackermann_Sn m) *)
(* end *)
(* end. *)
(* Run TemplateProgram (tmExtractConstr "tm_zero" 0). *)
(* Run TemplateProgram (tmExtractConstr "tm_succ" S). *)
(* Run TemplateProgram (tmExtract (Some "tm_ack") ackermann >>= tmPrint). *)
(* Print tm_ack. *)
(* Require Import Init.Nat. *)
(* Run TemplateProgram (tmExtract (Some "add_term") add ). *)
(* Print add_term. *)
(* Run TemplateProgram (tmExtract (Some "mult_term") mult). *)
(* Section extract. *)
(* Context { A B : Set }. *)
(* Context { encB : encodable B }. *)
(* Run TemplateProgram (tmExtract (Some "map_term") (@map A B) >>= tmPrint). *)
(* Print map_term. *)
(* Run TemplateProgram (tmExtract (Some "filter_term") (@filter A) >>= tmPrint). *)
(* Print filter_term. *)
(* End extract. *)
Global Obligation Tactic := idtac.
Typeclasses Transparent encodable.