Require Export SyntheticComputability.Synthetic.Definitions Lia.
Require Import SyntheticComputability.Shared.Dec.
Require Import Setoid Morphisms.
Require Import SyntheticComputability.Shared.Dec.
Require Import Setoid Morphisms.
Facts on reflects
Lemma reflects_not b P :
reflects b P -> reflects (negb b) (~P).
Proof.
unfold reflects.
destruct b; cbn; intuition congruence.
Qed.
Lemma reflects_conj {b1 b2 P1 P2} :
reflects b1 P1 -> reflects b2 P2 -> reflects (b1 && b2) (P1 /\ P2).
Proof.
unfold reflects.
destruct b1, b2; cbn; firstorder congruence.
Qed.
Lemma reflects_disj {b1 b2 P1 P2} :
reflects b1 P1 -> reflects b2 P2 -> reflects (b1 || b2) (P1 \/ P2).
Proof.
unfold reflects.
destruct b1, b2; cbn; firstorder congruence.
Qed.
Lemma reflects_prv b (P : Prop) : (b = true -> P) -> (b = false -> ~ P) -> reflects b P.
Proof.
intros H1 H2.
destruct b; cbn; firstorder.
Qed.
Lemma reflects_prv_iff b (P : Prop) : ((b = true -> P) /\ (b = false -> ~ P)) <-> reflects b P.
Proof.
split.
- intros []; now eapply reflects_prv.
- intros H. split; intros ->.
+ now eapply H.
+ intros H1 % H. congruence.
Qed.
Type-theoretic characterisations
Lemma dec_inf_decidable X p :
(forall x : X, dec (p x)) -> inf_decidable p.
Proof.
intros d. exists (fun x => if d x then true else false). intros x. destruct (d x); firstorder congruence.
Qed.
Lemma decidable_decidme {X} {p} :
decidable p -> forall x : X, p x \/ ~ p x.
Proof.
intros [f H] x. specialize (H x). destruct (f x); firstorder congruence.
Qed.
Lemma decider_decide {X} {f} {p} :
decider f p -> forall x : X, p x \/ ~ p x.
Proof.
intros H x. specialize (H x). destruct (f x); firstorder congruence.
Qed.
Lemma decidable_iff X p :
decidable p <-> inhabited (forall x : X, dec (p x)).
Proof.
split.
- intros [f H]. econstructor. intros x. specialize (H x). destruct (f x); firstorder congruence.
- intros [[f] % dec_inf_decidable]. now exists f.
Qed.
Notation stable p := (forall x, ~~ p x -> p x).
Lemma decidable_stable {X} (p : X -> Prop) :
decidable p -> stable p.
Proof.
intros [d] % decidable_iff a.
destruct (d a) as [H1 | H1]; tauto.
Qed.
Closure properties of decidability
Lemma discrete_iff X :
discrete X <-> inhabited (eq_dec X).
Proof.
split.
- intros [D] % decidable_iff. econstructor. intros x y; destruct (D (x,y)); firstorder.
- intros [d]. eapply decidable_iff. econstructor. intros (x,y). eapply d.
Qed.
Lemma dec_compl X p :
decidable p -> decidable (fun x : X => ~ p x).
Proof.
intros [f H]. exists (fun x => negb (f x)).
intros x. eapply reflects_not, H.
Qed.
Lemma dec_conj X p q :
decidable p -> decidable q -> decidable (fun x : X => p x /\ q x).
Proof.
intros [f] [g]. exists (fun x => andb (f x) (g x)).
intros x. eapply reflects_conj; eauto.
Qed.
Lemma dec_disj X p q :
decidable p -> decidable q -> decidable (fun x : X => p x \/ q x).
Proof.
intros [f] [g]. exists (fun x => orb (f x) (g x)).
intros x. eapply reflects_disj; eauto.
Qed.
Proper lemmas
Instance Proper_decides {X} :
Proper (pointwise_relation X (@eq bool) ==> pointwise_relation X iff ==> iff ) (@decider X).
Proof.
intros f g H1 p q H2. red in H1, H2.
unfold decider, reflects.
split; intros H x.
- now rewrite <- H2, H, H1.
- now rewrite H2, H, H1.
Qed.
Instance Proper_decidable {X} :
Proper (pointwise_relation X iff ==> iff) (@decidable X).
Proof.
intros p q H2.
split; intros [f H]; exists f.
- now rewrite <- H2.
- now rewrite H2.
Qed.
Closure properties of discreteness
Lemma discrete_bool : discrete bool.
Proof.
eapply discrete_iff. econstructor. exact _.
Qed.
Lemma discrete_nat : discrete nat.
Proof.
eapply discrete_iff. econstructor. exact _.
Qed.
Lemma discrete_nat_nat : discrete (nat * nat).
Proof.
eapply discrete_iff. econstructor. exact _.
Qed.
Lemma discrete_prod X Y : discrete X -> discrete Y -> discrete (X * Y).
Proof.
intros [d1] % discrete_iff [d2] % discrete_iff.
eapply discrete_iff. econstructor. exact _.
Qed.
Lemma discrete_sum X Y : discrete X -> discrete Y -> discrete (X + Y).
Proof.
intros [d1] % discrete_iff [d2] % discrete_iff.
eapply discrete_iff. econstructor. exact _.
Qed.
Lemma discrete_option X : discrete X -> discrete (option X).
Proof.
intros [d1] % discrete_iff. eapply discrete_iff.
econstructor. exact _.
Qed.
Lemma discrete_list X : discrete X -> discrete (list X).
Proof.
intros [d1] % discrete_iff. eapply discrete_iff.
econstructor. exact _.
Qed.