Require Undecidability.L.L.
Import L (term, var, app, lam).
Require Import Relation_Operators.
Definition funcomp {X Y Z} (g : Y -> Z) (f : X -> Y) :=
fun x => g (f x).
Arguments funcomp {X Y Z} (g f) /.
Definition scons {X: Type} (x : X) (xi : nat -> X) :=
fun n => match n with | 0 => x | S n => xi n end.
Fixpoint ren (xi : nat -> nat) (t : term) : term :=
match t with
| var x => var (xi x)
| app s t => app (ren xi s) (ren xi t)
| lam t => lam (ren (scons 0 (funcomp S xi)) t)
end.
Fixpoint subst (sigma: nat -> term) (s: term) : term :=
match s with
| var n => sigma n
| app s t => app (subst sigma s) (subst sigma t)
| lam s => lam (subst (scons (var 0) (funcomp (ren S) sigma)) s)
end.
Inductive step : term -> term -> Prop :=
| stepLam s t : step (app (lam s) t) (subst (scons t var) s)
| stepApp s s' t : step s s' -> step (app s t) (app s' t).
Definition wCBN : term -> Prop :=
fun s => exists t, clos_refl_trans term step s t /\ forall u, not (step t u).
Definition wCBNclosed : { s : term | forall sigma, subst sigma s = s } -> Prop :=
fun '(exist _ s _) => exists t, clos_refl_trans term step s (lam t).