(**************************************************************)
(* Copyright Dominique Larchey-Wendling * *)
(* *)
(* * Affiliation LORIA -- CNRS *)
(**************************************************************)
(* This file is distributed under the terms of the *)
(* CeCILL v2 FREE SOFTWARE LICENSE AGREEMENT *)
(**************************************************************)
Require Import List Arith Max Omega Wellfounded Bool.
Require Import utils pos vec.
Require Import subcode sss.
Require Import list_bool tiles_solvable bsm_defs bsm_utils.
Set Implicit Arguments.
(* Copyright Dominique Larchey-Wendling * *)
(* *)
(* * Affiliation LORIA -- CNRS *)
(**************************************************************)
(* This file is distributed under the terms of the *)
(* CeCILL v2 FREE SOFTWARE LICENSE AGREEMENT *)
(**************************************************************)
Require Import List Arith Max Omega Wellfounded Bool.
Require Import utils pos vec.
Require Import subcode sss.
Require Import list_bool tiles_solvable bsm_defs bsm_utils.
Set Implicit Arguments.
Tactic Notation "rew" "length" := autorewrite with length_db.
Local Notation "e #> x" := (vec_pos e x).
Local Notation "e [ v / x ]" := (vec_change e x v).
Local Notation "P // s -[ k ]-> t" := (sss_steps (@bsm_sss _) P k s t).
Local Notation "P // s ->> t" := (sss_compute (@bsm_sss _) P s t).
Local Notation "P // s ~~> t" := (sss_output (@bsm_sss _) P s t).
Section Simulator.
Hint Rewrite main_loop_length main_init_length : length_db.
Variable (lt : list ((list bool) *(list bool))).
Let n := 4.
Let s : pos 4 := pos0.
Let h : pos 4 := pos1.
Let l : pos 4 := pos2.
Let a : pos 4 := pos3.
Let Hsa : s <> a. Proof. discriminate. Qed.
Let Hsh : s <> h. Proof. discriminate. Qed.
Let Hsl : s <> l. Proof. discriminate. Qed.
Let Hah : a <> h. Proof. discriminate. Qed.
Let Hal : a <> l. Proof. discriminate. Qed.
Let Hhl : h <> l. Proof. discriminate. Qed.
Let lML := length_main_loop lt.
(* The complete simulator for the PCP *)
Definition pcp_bsm :=
(* 1 *) main_init s a h l 1 ++
(* 14 *) main_loop s a h l lt 14 (14+lML) ++
(* 14+lML *) main_init s a h l (14+lML) ++
(* 27+lML *) POP s 0 0 ::
nil.
Notation simulator := pcp_bsm.
Fact simulator_length : length simulator = 27+lML.
Proof. unfold simulator; rew length; unfold lML; omega. Qed.
Fact pcp_bsm_size : length simulator = 86+3*length lt+size_cards lt.
Proof.
rewrite simulator_length; unfold lML.
rewrite main_loop_size; omega.
Qed.
Let HS1 : (1,main_init s a h l 1) <sc (1, simulator).
Proof. unfold simulator; auto. Qed.
Let HS2 : (14,main_loop s a h l lt 14 (14+lML)) <sc (1, simulator).
Proof. unfold simulator; auto. Qed.
Let HS3 : (14+lML,main_init s a h l (14+lML)) <sc (1, simulator).
Proof. unfold simulator; auto. Qed.
Ltac dest x y := destruct (pos_eq_dec x y) as [ | ]; [ subst x | ]; rew vec.
Theorem pcp_bsm_sound v :
tiles_solvable lt
-> (1,simulator) // (1,v) ->> (0,v[nil/s][nil/a][nil/h][nil/l]).
Proof.
intros H1; unfold simulator.
apply subcode_sss_compute_trans with (2 := main_init_spec Hsa Hsh Hsl Hah Hal 1 v); auto.
destruct (main_loop_sound Hsa Hsh Hsl Hah Hal Hhl)
with (lt := lt) (i := 14) (p := 14+lML)
(v := v[(Zero::nil)/s][nil/a][nil/h][nil/l])
as (w & Hw1 & Hw2); rew vec.
apply subcode_sss_compute_trans with (2 := Hw1); auto.
apply subcode_sss_compute_trans with (2 := main_init_spec Hsa Hsh Hsl Hah Hal (14+lML) _); auto.
bsm sss POP 0 with s 0 0 nil; rew vec.
bsm sss stop; f_equal.
apply vec_pos_ext; intros x.
dest x a; dest x l; dest x h; dest x s.
rewrite <- Hw2; rew vec.
Qed.
Theorem pcp_bsm_complete v w p :
(1,simulator) // (1,v) ~~> (p,w)
-> tiles_solvable lt /\ p = 0 /\ w = v[nil/s][nil/a][nil/h][nil/l].
Proof.
intros ((k2 & Hk2) & H1).
destruct (main_init_spec Hsa Hsh Hsl Hah Hal 1 v) as (k1 & Hk1).
apply subcode_sss_subcode_inv with (4 := Hk1) in Hk2; auto.
2: apply bsm_sss_fun.
2: revert H1; apply subcode_out_code; auto.
destruct Hk2 as (k & ? & Hk2); subst.
apply subcode_sss_steps_inv with (1 := HS2) in Hk2; auto.
2: simpl; omega.
2: revert H1; apply subcode_out_code; auto.
destruct Hk2 as (k2 & k3 & (q,v') & H2 & H3 & H4 & H5).
simpl fst in H5.
apply ex_intro with (x := k2) in H2.
apply main_loop_complete in H2; rew vec.
2: unfold out_code, code_end, snd, fst, lML; rew length; omega.
destruct H2 as (? & H2 & H6); subst.
split; auto.
destruct (main_init_spec Hsa Hsh Hsl Hah Hal (14+lML) v') as (k4 & Hk4).
apply subcode_sss_subcode_inv with (4 := Hk4) in H3; auto.
2: apply bsm_sss_fun.
2: revert H1; apply subcode_out_code; auto.
destruct H3 as (k5 & ? & H7); subst.
unfold simulator in H7.
bsm inv POP 0 with H7 s 0 0 (@nil bool); rew vec.
destruct H7 as (k6 & H7 & H8).
apply sss_steps_stall in H8.
2: simpl; omega.
apply proj2 in H8.
inversion H8.
split; auto.
apply vec_pos_ext; intros x.
dest x s; dest x l; dest x h; dest x a.
rewrite <- H2; rew vec.
intros E.
apply f_equal with (f := fst) in E.
unfold fst in E.
subst p.
revert H1.
unfold out_code, code_start, code_end, fst, snd.
rewrite simulator_length.
intro; omega.
Qed.
End Simulator.