(**************************************************************)
(* Copyright Dominique Larchey-Wendling * *)
(* *)
(* * Affiliation LORIA -- CNRS *)
(**************************************************************)
(* This file is distributed under the terms of the *)
(* CeCILL v2 FREE SOFTWARE LICENSE AGREEMENT *)
(**************************************************************)
Require Import List Permutation Arith Omega.
Require Import utils pos vec.
Require Import subcode sss mm_defs.
Require Import ill eill.
Set Implicit Arguments.
Local Infix "~p" := (@Permutation _) (at level 70).
(* Copyright Dominique Larchey-Wendling * *)
(* *)
(* * Affiliation LORIA -- CNRS *)
(**************************************************************)
(* This file is distributed under the terms of the *)
(* CeCILL v2 FREE SOFTWARE LICENSE AGREEMENT *)
(**************************************************************)
Require Import List Permutation Arith Omega.
Require Import utils pos vec.
Require Import subcode sss mm_defs.
Require Import ill eill.
Set Implicit Arguments.
Local Infix "~p" := (@Permutation _) (at level 70).
register p (0<=p<n) is encoded by p
its dual is encoded by n+p
positions in the program (PC) are encoded from 2*n until (potential) infinity
Let q (i : nat) : ll_vars := 2*n+i.
Let rx (p : pos n) := pos2nat p.
Let ry (p : pos n) := n+pos2nat p.
Let H_rx : forall p q, rx p = rx q -> p = q.
Proof.
intros p1 p2; unfold rx; intros.
apply pos2nat_inj; omega.
Qed.
(* This encodes a list of instructions starting at PC=i
i:INC x ~~~> ((rx x) -o q(1+i)) -o (q i)
i:DEC x p ~~~> (ry x & q p) -o q i and (rx x) -o q(1+i) -o (q i)
*)
Local Fixpoint mm_linstr_enc i l :=
match l with
| nil => nil
| INC x :: l => LL_INC (rx x) (q (1+i)) (q i) :: mm_linstr_enc (1+i) l
| DEC x p :: l => LL_FORK (ry x) (q p) (q i) :: LL_DEC (rx x) (q (1+i)) (q i) :: mm_linstr_enc (1+i) l
end.
Local Fact mm_linstr_enc_app i l m : mm_linstr_enc i (l++m) = mm_linstr_enc i l ++ mm_linstr_enc (length l+i) m.
Proof.
revert i; induction l as [ | [ x | x p ] l IHl ]; intros i; simpl; f_equal; auto.
rewrite IHl; do 2 f_equal; omega.
f_equal; rewrite IHl; do 2 f_equal; omega.
Qed.
Local Fact subcode_mm_linstr_enc i x j l : (i,INC x::nil) <sc (j,l) -> In (LL_INC (rx x) (q (1+i)) (q i)) (mm_linstr_enc j l).
Proof.
intros (l1 & l2 & H1 & H2); subst.
rewrite mm_linstr_enc_app.
apply in_or_app; right; left; do 2 f_equal; omega.
Qed.
Local Fact subcode_mm_linstr_dec i x p j l : (i,DEC x p::nil) <sc (j,l) -> incl (LL_FORK (ry x) (q p) (q i) :: LL_DEC (rx x) (q (1+i)) (q i) :: nil) (mm_linstr_enc j l).
Proof.
intros (l1 & l2 & H1 & H2); subst.
rewrite mm_linstr_enc_app.
intros A HA; apply in_or_app; right.
destruct HA as [ HA | [ HA | [] ] ]; subst.
left; do 2 f_equal; omega.
right; left; do 2 f_equal; omega.
Qed.
Local Fact mm_linstr_enc_spec i ll A : In A (mm_linstr_enc i ll) -> (exists j x, (j,INC x::nil) <sc (i,ll) /\ A = LL_INC (rx x) (q (1+j)) (q j))
\/ (exists j x p, (j,DEC x p::nil) <sc (i,ll) /\ ( A = LL_FORK (ry x) (q p) (q j)
\/ A = LL_DEC (rx x) (q (1+j)) (q j) ) ).
Proof.
revert i A; induction ll as [ | [ x | x p ] ll IHll ]; intros i A HA.
destruct HA.
destruct HA as [ HA | HA ].
left; exists i, x; split; auto.
apply IHll in HA.
destruct HA as [ (j & x' & H1 & H2) | (j & x' & p & H1 & H2) ].
left; exists j, x'; split; auto.
apply subcode_trans with (1 := H1); subcode_tac; solve list eq.
right; exists j, x', p; split; auto.
apply subcode_trans with (1 := H1); subcode_tac; solve list eq.
destruct HA as [ HA | HA ].
right; exists i, x, p; split; auto.
destruct HA as [ HA | HA ].
right; exists i, x, p; split; auto.
apply IHll in HA.
destruct HA as [ (j & x' & H1 & H2) | (j & x' & p' & H1 & H2) ].
left; exists j, x'; split; auto.
apply subcode_trans with (1 := H1); subcode_tac; solve list eq.
right; exists j, x', p'; split; auto.
apply subcode_trans with (1 := H1); subcode_tac; solve list eq.
Qed.
(* k is a position outside the program were execution has to stop *)
Variable (P : nat*(list (mm_instr n))) (k : nat) (Hk : out_code k P).
(* This encodes P into EILL commands
(q k) terminates on an zero vector
(ry j) terminates on a vector vec there is no (rx j)
*)
Definition Sig0 := LL_INC (q k) (q k) (q k)
:: map (fun c => LL_DEC (rx (fst c)) (ry (snd c)) (ry (snd c))) (pos_not_diag n)
++ map (fun j => LL_INC (ry j) (ry j) (ry j)) (pos_list n).
Definition SigI := match P with (i,l) => mm_linstr_enc i l end.
Definition Sig := Sig0 ++ SigI.
Notation "P // s -[ k ]-> t" := (sss_steps (@mm_sss _) P k s t).
Notation "P // s ->> t" := (sss_compute (@mm_sss _) P s t).
(* We define the semantics as in the paper ToCL 2013 (DLW & Galmiche) *)
Local Definition s (x : ll_vars) (v : vec nat n) : Prop.
Proof.
refine (match le_lt_dec n x with
| left H1 => match le_lt_dec (2*n) x with
| left _ => P // (x-2*n,v) ->> (k,vec_zero)
| right H2 => vec_pos v (@nat2pos n (x-n) _) = 0
end
| right H1 => v = vec_one (@nat2pos n x H1)
end); omega.
Defined.
(* We check the required properties *)
Let H_s_q : forall i v, s (q i) v <-> P // (i,v) ->> (k,vec_zero).
Proof.
intros i v; unfold q, s.
destruct (le_lt_dec n (2*n+i)); [ | omega ].
destruct (le_lt_dec (2*n) (2*n+i)); [ | omega ].
replace (2*n+i-2*n) with i by omega; tauto.
Qed.
Let H_s_rx : forall p v, s (rx p) v <-> v = vec_one p.
Proof.
intros p v; unfold s, rx.
destruct (le_lt_dec n (pos2nat p)).
generalize (pos2nat_prop p); omega.
rewrite nat2pos_pos2nat; tauto.
Qed.
Let H_s_ry : forall p v, s (ry p) v <-> vec_pos v p = 0.
Proof.
intros p v; unfold s, ry.
destruct (le_lt_dec n (n+pos2nat p)); [ | omega ].
destruct (le_lt_dec (2*n) (n+pos2nat p)).
generalize (pos2nat_prop p); omega.
match goal with |- vec_pos _ (nat2pos ?H) = _ <-> _ => cutrewrite (nat2pos H = p) end.
tauto.
apply pos2nat_inj; rewrite pos2nat_nat2pos; omega.
Qed.
(* No need of the code of s anymore *)
Opaque s.
(* This is a notation for the trivial phase semantics *)
Notation "'[[' A ']]'" := (ll_tps s A) (at level 65).
(* i -o (_j_ -o _j_) *)
Let sem_x_y_y i j : i <> j -> [[ [i LL_DEC (rx i) (ry j) (ry j) ] ]] vec_zero.
Proof.
intros Hij.
simpl; unfold ll_tps_imp.
intros v Hv.
rewrite H_s_rx in Hv.
intros w Hw.
rewrite H_s_ry in Hw.
rewrite H_s_ry.
rewrite (vec_plus_comm v), vec_zero_plus.
unfold vec_plus; rewrite vec_pos_set.
subst; rewrite Hw, vec_one_spec_neq; auto.
Qed.
Let sem_y_y_y j : [[ [i LL_INC (ry j) (ry j) (ry j) ] ]] vec_zero.
Proof.
simpl; unfold ll_tps_imp.
intros x Hx; rew vec.
generalize (Hx vec_zero); rew vec.
intros H; apply H, H_s_ry; rew vec.
Qed.
(* We need out_code k P here *)
Let sem_k v : [[£ (q k)]] v <-> v = vec_zero.
Proof.
simpl; rewrite H_s_q.
split.
2: intros; subst; exists 0; constructor.
intros H.
apply sss_compute_stop in H; auto.
inversion H; auto.
Qed.
Let sem_k_k_k : [[ [i LL_INC (q k) (q k) (q k) ] ]] vec_zero.
Proof.
simpl; unfold ll_tps_imp.
intros x Hx; rew vec.
generalize (Hx vec_zero); rew vec.
intros H; apply H, sem_k; auto.
Qed.
Let Sig0_zero A : In A Sig0 -> [[ [iA] ]] vec_zero.
Proof.
unfold Sig0.
intros [ H | H ]; subst.
apply sem_k_k_k.
apply in_app_or in H.
destruct H as [ H | H ];
apply in_map_iff in H.
destruct H as ((i & j) & H1 & H2); subst.
apply sem_x_y_y; simpl.
apply pos_not_diag_spec in H2; auto.
destruct H as (y & H1 & _); subst.
apply sem_y_y_y.
Qed.
Let SigI_zero A : In A SigI -> [[ [iA] ]] vec_zero.
Proof.
unfold SigI.
destruct P as (i & lP).
intros H.
apply mm_linstr_enc_spec in H.
destruct H as [ (j & x & H1 & H2) | (j & x & p & H1 & [ H2 | H2 ]) ]; subst A.
simpl; unfold ll_tps_imp.
intros v Hv.
rewrite vec_plus_comm, vec_zero_plus.
apply H_s_q.
apply mm_compute_INC with (1 := H1).
specialize (Hv (vec_one x)).
replace (vec_change v x (S (vec_pos v x))) with (vec_plus (vec_one x) v).
apply H_s_q.
apply Hv.
apply H_s_rx; split.
apply vec_pos_ext.
intros p; rewrite vec_pos_plus.
destruct (pos_eq_dec x p).
subst; rewrite vec_one_spec_eq, vec_change_eq; auto.
rewrite vec_one_spec_neq, vec_change_neq; auto.
simpl; unfold ll_tps_imp.
intros v (Hv1 & Hv2).
rewrite vec_plus_comm, vec_zero_plus.
apply H_s_q.
rewrite H_s_ry in Hv1.
apply mm_compute_DEC_0 with (1 := H1); auto.
apply H_s_q; auto.
simpl; unfold ll_tps_imp.
intros v Hv w Hw.
rewrite (vec_plus_comm v), vec_zero_plus.
apply H_s_q.
apply H_s_rx in Hv.
rewrite vec_plus_comm.
assert (exists u, vec_pos (vec_plus v w) x = S u) as Hu.
exists (vec_pos w x).
rewrite vec_pos_plus; subst.
rewrite vec_one_spec_eq; auto.
destruct Hu as (u & Hu).
apply mm_compute_DEC_S with (1 := H1) (u := vec_pos w x); auto.
rewrite vec_pos_plus; subst.
rewrite vec_one_spec_eq; auto.
apply H_s_q.
eq goal Hw; f_equal.
apply vec_pos_ext.
intros r.
destruct (pos_eq_dec x r).
subst; rewrite vec_change_eq; auto.
rewrite vec_change_neq, vec_pos_plus; auto.
subst; rewrite vec_one_spec_neq; auto.
Qed.
Lemma Sig_zero A : In A Sig -> [[ [i A] ]] vec_zero.
Proof.
intros H; apply in_app_or in H; destruct H.
apply Sig0_zero; auto.
apply SigI_zero; auto.
Qed.
Corollary ll_tps_Sig_zero : ll_tps_list s (map (fun c => ❗[i c]) Sig) vec_zero.
Proof.
generalize Sig Sig_zero; intros S.
induction S as [ | A S IHS ]; intros HS.
simpl; auto.
simpl; exists vec_zero, vec_zero; repeat split; auto.
rew vec.
apply HS; left; auto.
apply IHS; intros; apply HS; right; auto.
Qed.
Theorem lemma_5_5 v i : Sig; vec_map_list v rx ⊦ q i -> P // (i,v) ->> (k,vec_zero).
Proof.
intros H.
apply G_eill_sound in H.
apply ll_tps_sound with (s := s) in H.
red in H.
specialize (H v).
rewrite vec_plus_comm, vec_zero_plus in H.
apply H_s_q; auto.
apply H.
rewrite ll_tps_app.
exists vec_zero, v; repeat split.
rew vec.
apply ll_tps_Sig_zero.
apply ll_tps_vec_map_list; auto.
Qed.
Let prop_5_2_rec (p : pos n) v Ga :
vec_pos v p = 0
-> Sig0; Ga ⊦ ry p
-> Sig0; vec_map_list v rx ++ Ga ⊦ ry p.
Proof.
revert Ga.
induction v as [ | r | v w Hv Hw ] using (@vec_nat_induction _); intros Ga.
intros _.
rewrite vec_map_list_zero.
auto.
destruct (pos_eq_dec r p) as [ H | H ]; rew vec.
omega.
intros _ H1.
rewrite vec_map_list_one.
apply in_eill_dec with (rx r) (ry p); auto.
right; apply in_or_app; left.
apply in_map_iff.
exists (r,p); simpl; split; auto.
apply pos_not_diag_spec; auto.
apply in_eill_ax.
intros H1 H2.
rewrite vec_pos_plus in H1.
apply in_eill_perm with (vec_map_list v rx ++ vec_map_list w rx ++ Ga).
rewrite vec_map_list_plus, app_ass; auto.
apply Hv.
omega.
apply Hw; auto; omega.
Qed.
Lemma prop_5_2 p v :
vec_pos v p = 0
-> Sig; vec_map_list v rx ⊦ ry p.
Proof.
rewrite (app_nil_end (_ _ rx)).
intros H.
apply g_eill_mono_Si with Sig0.
unfold Sig; intros ? ?; apply in_or_app; left; auto.
apply prop_5_2_rec; auto.
apply in_eill_inc with (ry p) (ry p).
right; apply in_or_app; right.
apply in_map_iff.
exists p; split; auto.
apply pos_list_prop.
apply in_eill_ax.
Qed.
Lemma lemma_5_3 i v : P // (i,v) ->> (k,vec_zero) -> Sig; vec_map_list v rx ⊦ q i.
Proof.
intros (r & Hr); revert i v Hr.
induction r as [ | r IHr ]; intros i v Hr.
apply sss_steps_0_inv in Hr.
inversion Hr; subst i v; clear Hr.
rewrite vec_map_list_zero.
apply in_eill_inc with (q k) (q k).
left; auto.
apply in_eill_ax.
apply sss_steps_S_inv' in Hr.
destruct Hr as ((j,w) & H1 & H2).
apply IHr in H2.
generalize (sss_step_in_code H1); simpl fst; intros H3.
apply in_code_subcode in H3.
destruct H3 as (ii & Hii).
apply sss_step_subcode_inv with (1 := Hii) in H1.
destruct ii as [ p | p l ].
apply mm_sss_INC_inv in H1.
destruct H1; subst.
apply in_eill_inc with (rx p) (q (1+i)).
apply in_or_app; right.
unfold SigI; destruct P as (ip,lP).
apply subcode_mm_linstr_enc; auto.
revert H2; apply in_eill_perm.
rewrite vec_change_succ, vec_map_list_plus, vec_map_list_one; auto.
case_eq (vec_pos v p).
intros Hv.
apply mm_sss_DEC0_inv in H1; auto.
destruct H1; subst l w.
apply in_eill_fork with (ry p) (q j); auto.
apply in_or_app; right.
unfold SigI; destruct P as (ip,lP).
apply subcode_mm_linstr_dec with (1 := Hii); auto.
left; auto.
apply prop_5_2; auto.
intros u Hu.
apply mm_sss_DEC1_inv with (u := u) in H1; auto.
destruct H1; subst j w.
rewrite vec_change_pred with (1 := Hu).
apply in_eill_perm with (1 := Permutation_sym (vec_map_list_plus _ _ _)).
rewrite vec_map_list_one.
apply in_eill_dec with (rx p) (q (1+i)); auto.
apply in_or_app; right.
unfold SigI; destruct P as (ip,lP).
apply subcode_mm_linstr_dec with (1 := Hii); auto.
right; left; auto.
apply in_eill_ax.
Qed.
Theorem G_eill_mm i v : P // (i,v) ->> (k,vec_zero)
<-> Sig; vec_map_list v rx ⊦ q i.
Proof.
split.
apply lemma_5_3.
apply lemma_5_5; auto.
Qed.
End Minsky.