(**************************************************************)
(* Copyright Dominique Larchey-Wendling * *)
(* *)
(* * Affiliation LORIA -- CNRS *)
(**************************************************************)
(* This file is distributed under the terms of the *)
(* CeCILL v2 FREE SOFTWARE LICENSE AGREEMENT *)
(**************************************************************)
(* Copyright Dominique Larchey-Wendling * *)
(* *)
(* * Affiliation LORIA -- CNRS *)
(**************************************************************)
(* This file is distributed under the terms of the *)
(* CeCILL v2 FREE SOFTWARE LICENSE AGREEMENT *)
(**************************************************************)
Require Import Arith Nat Omega List.
Require Import utils_tac sums rel_iter binomial.
Require Import alpha expo_diophantine dio_logic.
Set Implicit Arguments.
Local Notation power := (mscal mult 1).
Local Notation expo := (mscal mult 1).
Theorem dio_rel_alpha a b c : 𝔻P a -> 𝔻P b -> 𝔻P c
-> 𝔻R (fun ν => 3 < b ν /\ a ν = alpha_nat (b ν) (c ν)).
Proof.
intros.
apply dio_rel_equiv with (1 := fun v => alpha_diophantine (a v) (b v) (c v)).
unfold alpha_conditions.
dio_rel_auto.
Defined.
Hint Resolve dio_rel_alpha.
Fact dio_rel_alpha_size : df_size (proj1_sig (dio_rel_alpha (dio_expr_var 0) (dio_expr_var 1) (dio_expr_var 2))) = 490.
Proof. reflexivity. Qed.
Theorem dio_rel_expo p q r : 𝔻P p -> 𝔻P q -> 𝔻P r -> 𝔻R (fun ν => p ν = expo (r ν) (q ν)).
Proof.
intros.
apply dio_rel_equiv with (1 := fun v => expo_diophantine (p v) (q v) (r v)).
unfold expo_conditions.
dio_rel_auto.
Defined.
Hint Resolve dio_rel_expo.
Check dio_rel_expo.
Print Assumptions dio_rel_expo.
Fact dio_rel_expo_size : df_size (proj1_sig (dio_rel_expo (dio_expr_var 0) (dio_expr_var 1) (dio_expr_var 2))) = 1689.
Proof. reflexivity. Qed.
Section df_digit.
Let is_digit_eq c q i y : is_digit c q i y
<-> y < q
/\ exists a b p, c = (a*q+y)*p+b
/\ b < p
/\ p = power i q.
Proof.
split; intros (H1 & a & b & H2).
+ split; auto; exists a, b, (power i q); repeat split; tauto.
+ destruct H2 as (p & H2 & H3 & H4).
split; auto; exists a, b; subst; auto.
Qed.
Lemma dio_rel_is_digit c q i y : 𝔻P c -> 𝔻P q -> 𝔻P i -> 𝔻P y
-> 𝔻R (fun ν => is_digit (c ν) (q ν) (i ν) (y ν)).
Proof.
intros H1 H2 H3 H4.
apply dio_rel_equiv with (1 := fun ν => is_digit_eq (c ν) (q ν) (i ν) (y ν)).
dio_rel_auto; apply dio_expr_plus; auto.
Defined.
End df_digit.
Hint Resolve dio_rel_is_digit.
Check dio_rel_is_digit.
Eval compute in df_size (proj1_sig (dio_rel_is_digit (dio_expr_var 0) (dio_expr_var 1) (dio_expr_var 2) (dio_expr_var 3))).
Section df_binomial.
Notation "∑" := (msum plus 0).
Let plus_cancel_l : forall a b c, a + b = a + c -> b = c.
Proof. intros; omega. Qed.
Hint Resolve Nat.mul_add_distr_r.
Let is_binomial_eq b n k : b = binomial n k
<-> exists q c, q = power (1+n) 2
/\ c = power n (1+q)
/\ is_digit c q k b.
Proof.
split.
+ intros ?; subst.
set (q := power (1+n) 2).
assert (Hq : q <> 0).
{ unfold q; generalize (@power_ge_1 (S n) 2); intros; simpl; omega. }
set (c := power n (1+q)).
exists q, c; split; auto.
split; auto.
split.
* apply binomial_lt_power.
* destruct (le_lt_dec k n) as [ Hk | Hk ].
- exists (∑ (n-k) (fun i => binomial n (S k+i) * power i q)),
(∑ k (fun i => binomial n i * power i q)); split; auto.
2: { apply sum_power_lt; auto; intros; apply binomial_lt_power. }
rewrite Nat.mul_add_distr_r, <- mult_assoc, <- power_S.
rewrite <- sum_0n_distr_r with (1 := Nat_plus_monoid) (3 := Nat_mult_monoid); auto.
rewrite <- plus_assoc, (plus_comm _ (∑ _ _)).
rewrite <- msum_plus1 with (f := fun i => binomial n i * power i q); auto.
rewrite plus_comm.
unfold c.
rewrite Newton_nat_S.
replace (S n) with (S k + (n-k)) by omega.
rewrite msum_plus; auto; f_equal; apply msum_ext.
intros; rewrite power_plus; ring.
- exists 0, c.
rewrite binomial_gt; auto.
rewrite Nat.mul_0_l; split; auto.
unfold c.
apply lt_le_trans with (power (S n) q).
++ rewrite Newton_nat_S.
apply sum_power_lt; auto.
intros; apply binomial_lt_power.
++ apply power_mono; omega.
+ intros (q & c & H1 & H2 & H3).
assert (Hq : q <> 0).
{ rewrite H1; generalize (@power_ge_1 (S n) 2); intros; simpl; omega. }
rewrite Newton_nat_S in H2.
apply is_digit_fun with (1 := H3).
destruct (le_lt_dec k n) as [ Hk | Hk ].
* red; split.
- subst; apply binomial_lt_power.
- exists (∑ (n-k) (fun i => binomial n (S k+i) * power i q)),
(∑ k (fun i => binomial n i * power i q)); split.
2: { apply sum_power_lt; auto; intros; subst; apply binomial_lt_power. }
rewrite Nat.mul_add_distr_r, <- mult_assoc, <- power_S.
rewrite <- sum_0n_distr_r with (1 := Nat_plus_monoid) (3 := Nat_mult_monoid); auto.
rewrite <- plus_assoc, (plus_comm _ (∑ _ _)).
rewrite <- msum_plus1 with (f := fun i => binomial n i * power i q); auto.
rewrite plus_comm, H2.
replace (S n) with (S k + (n-k)) by omega.
rewrite msum_plus; auto; f_equal.
apply msum_ext.
intros; rewrite power_plus; ring.
* rewrite binomial_gt; auto.
split; try omega.
exists 0, c.
rewrite Nat.mul_0_l; split; auto.
rewrite H2.
apply lt_le_trans with (power (S n) q).
- apply sum_power_lt; auto.
subst; intros; apply binomial_lt_power.
- apply power_mono; omega.
Qed.
Lemma dio_rel_binomial b n k : 𝔻P b -> 𝔻P n -> 𝔻P k
-> 𝔻R (fun ν => b ν = binomial (n ν) (k ν)).
Proof.
intros H1 H2 H3.
apply dio_rel_equiv with (1 := fun ν => is_binomial_eq (b ν) (n ν) (k ν)).
dio_rel_auto; apply dio_expr_plus; auto.
Defined.
End df_binomial.
Check dio_rel_binomial.
Eval compute in df_size (proj1_sig (dio_rel_binomial (dio_expr_var 0) (dio_expr_var 1) (dio_expr_var 2))).