(**************************************************************)
(* Copyright Dominique Larchey-Wendling * *)
(* *)
(* * Affiliation LORIA -- CNRS *)
(**************************************************************)
(* This file is distributed under the terms of the *)
(* CeCILL v2 FREE SOFTWARE LICENSE AGREEMENT *)
(**************************************************************)
(* Copyright Dominique Larchey-Wendling * *)
(* *)
(* * Affiliation LORIA -- CNRS *)
(**************************************************************)
(* This file is distributed under the terms of the *)
(* CeCILL v2 FREE SOFTWARE LICENSE AGREEMENT *)
(**************************************************************)
Require Import List Arith Omega.
Require Import utils_tac utils_list utils_nat gcd rel_iter pos vec.
Set Implicit Arguments.
Section fractran.
Implicit Type (l : list (nat*nat)).
One step of a Fractran program computation. Notice that
the two rule are INCOMPATIBLE, making the computation
deterministic (except) when (_,0) belongs to l
Reserved Notation "l '//' x → y" (at level 70, no associativity).
Inductive fractran_step : list (nat*nat) -> nat -> nat -> Prop :=
| in_ft_0 : forall p q l x y, q*y = p*x -> (p,q)::l // x → y
| in_ft_1 : forall p q l x y, ~ divides q (p*x) -> l // x → y -> (p,q)::l // x → y
where "l // x → y" := (fractran_step l x y).
Definition fractran_regular l := Forall (fun c => snd c <> 0) l.
Fact fractran_step_nil_inv x y : nil // x → y <-> False.
Proof. split; inversion 1. Qed.
Fact fractran_step_cons_inv p q l x y : (p,q)::l // x → y <-> q*y = p*x \/ ~ divides q (p*x) /\ l // x → y.
Proof.
split.
+ inversion 1; auto.
+ intros [ H | (H1 & H2) ]; [ constructor 1 | constructor 2 ]; auto.
Qed.
Fact mul_pos_inj_l q x y : q <> 0 -> q*x = q*y -> x = y.
Proof.
intros H1 H2.
destruct q; try omega.
apply le_antisym; apply mult_S_le_reg_l with q; omega.
Qed.
Lemma fractran_step_inv P x y :
P // x → y
-> exists l p q r, P = l++(p,q)::r
/\ (forall u v, In (u,v) l -> ~ divides v (u*x))
/\ q*y=p*x.
Proof.
induction 1 as [ p q P x y H | u v P x y H1 H2 IH2 ].
+ exists nil, p, q, P; simpl; tauto.
+ destruct IH2 as (l & p & q & r & -> & H4 & H5).
exists ((u,v)::l), p, q, r; simpl; msplit 2; auto.
intros ? ? [ H | H ]; auto; inversion H; subst; auto.
Qed.
(* Regular FRACTRAN programs define a deterministic step relation *)
Lemma fractran_step_fun l x y1 y2 : fractran_regular l -> l // x → y1 -> l // x → y2 -> y1 = y2.
Proof.
intros H1 H2 ; revert H2 H1 y2.
induction 1 as [ p q l x y1 H1 | p q l x y1 H1 H2 IH2 ];
intros H0 y2 H3; rewrite fractran_step_cons_inv in H3;
destruct H3 as [ H3 | (H3 & H4) ].
+ apply Forall_cons_inv, proj1 in H0.
simpl in H0.
revert H1; rewrite <- H3.
apply mul_pos_inj_l; auto.
+ destruct H3; exists y1; rewrite <- H1; ring.
+ destruct H1; exists y2; rewrite <- H3; ring.
+ apply Forall_cons_inv, proj2 in H0; auto.
Qed.
(* Regular FRACTRAN programs deefine a linearly bounded step relation
The bound computed in the following proofs is very lazy.
Indeed we choose p1+...+pn whereas ideally,
one could choose max(ceil(pi/qi)) where l = p1/q1;...;pn/qn *)
Lemma fractran_step_bound l : fractran_regular l -> { k | forall x y, l // x → y -> y <= k*x }.
Proof.
unfold fractran_regular.
induction l as [ | (p,q) l IHl ].
+ intros _; exists 1; auto.
intros ? ? H; exfalso; revert H; apply fractran_step_nil_inv.
+ intros H; rewrite Forall_cons_inv in H; simpl in H.
destruct H as (Hq & H).
destruct (IHl H) as (k & H2).
exists (p+k).
intros x y Hxy.
apply fractran_step_cons_inv in Hxy.
destruct Hxy as [ Hxy | (_ & Hxy) ].
* rewrite Nat.mul_add_distr_r, <- Hxy.
destruct q; simpl; try omega.
generalize (q*y) (k*x); intros; omega.
* apply le_trans with (1 := H2 _ _ Hxy).
apply mult_le_compat; omega.
Qed.
the computation is stopped at x, no step is possible from x
Definition fractran_stop l x := forall z, ~ l // x → z.
Fact fractan_stop_nil_inv x : fractran_stop nil x <-> True.
Proof.
split; try tauto; intros _ z; rewrite fractran_step_nil_inv; tauto.
Qed.
Fact fractan_stop_cons_inv p q l x : fractran_stop ((p,q)::l) x <-> ~ divides q (p*x) /\ fractran_stop l x.
Proof.
split.
* intros H.
assert (~ divides q (p*x)) as H'.
{ intros (z & Hz); apply (H z); constructor; rewrite Hz; ring. }
split; auto.
intros z Hz; apply (H z); constructor 2; auto.
* intros (H1 & H2) z Hz.
apply fractran_step_cons_inv in Hz.
destruct Hz as [ H3 | (H3 & H4) ].
- apply H1; exists z; rewrite <- H3; ring.
- apply (H2 _ H4).
Qed.
Fact fractran_step_dec l x : { y | l // x → y } + { fractran_stop l x }.
Proof.
revert x; induction l as [ | (a,b) l IH ]; intros x.
+ right; rewrite fractan_stop_nil_inv; auto.
+ destruct x as [ | x ].
{ left; exists 0; constructor 1; ring. }
destruct a as [ | a ].
{ left; exists 0; constructor 1; ring. }
destruct b as [ | b ].
* assert (~ divides 0 (S a*S x)) as C.
{ intros C; apply divides_0_inv, mult_is_O in C; omega. }
destruct (IH (S x)) as [ (y & Hy) | Hx ].
- left; exists y; constructor 2; auto.
- right; rewrite fractan_stop_cons_inv; split; auto.
* generalize (div_rem_spec1 (S a*S x) (S b)).
case_eq (rem (S a * S x) (S b)).
- intros H1 H2; left; exists (div (S a*S x) (S b)); constructor 1; rewrite H2 at 2; ring.
- intros d Hd _.
assert (~ divides (S b) (S a*S x)) as C.
{ rewrite divides_rem_eq, Hd; discriminate. }
destruct (IH (S x)) as [ (y & Hy) | Hx ].
++ left; exists y; constructor 2; auto.
++ right; rewrite fractan_stop_cons_inv; split; auto.
Qed.
Definition fractran_steps l := rel_iter (fractran_step l).
Definition fractran_compute l x y := exists n, fractran_steps l n x y.
Definition fractran_terminates l x := exists y, fractran_compute l x y /\ fractran_stop l y.
(* The Halting problem for a FRACTRAN instance (l,x) is determining if
there is y related via (fractran_step l)* to x and maximal for (fractran_step l) *)
Definition FRACTRAN_PROBLEM := (list (nat*nat) * nat)%type.
Definition FRACTRAN_HALTING (P : FRACTRAN_PROBLEM) := let (l,x) := P in fractran_terminates l x.
(* Now we treat the cases where (_,0) occurs in l *)
Let remove_zero_den l := filter (fun c => if eq_nat_dec (snd c) 0 then false else true) l.
Let remove_zero_den_Forall l : fractran_regular (remove_zero_den l).
Proof.
unfold fractran_regular.
induction l as [ | (p,q) ]; simpl; auto.
destruct (eq_nat_dec q 0); auto.
Qed.
Section zero_cases.
Fact fractran_step_head_not_zero p q l y : q <> 0 -> (p,q)::l // 0 → y -> y = 0.
Proof.
intros H2 H3.
apply fractran_step_cons_inv in H3.
destruct H3 as [ H3 | (H3 & _) ].
+ rewrite Nat.mul_0_r in H3; apply mult_is_O in H3; omega.
+ destruct H3; exists 0; ring.
Qed.
Fact fractran_rt_head_not_zero p q l n y : q <> 0 -> fractran_steps ((p,q)::l) n 0 y -> y = 0.
Proof.
intros H2.
induction n as [ | n IHn ].
+ simpl; auto.
+ intros (a & H3 & H4).
apply fractran_step_head_not_zero in H3; subst; auto.
Qed.
Lemma FRACTRAN_HALTING_on_zero_first_no_zero_den p q l : q <> 0 -> FRACTRAN_HALTING ((p,q)::l,0) <-> False.
Proof.
intros Hq; split; try tauto.
intros (y & (k & H1) & H2).
apply fractran_rt_head_not_zero in H1; auto.
subst y; apply (H2 0); constructor 1; ring.
Qed.
Fact fractran_step_no_zero_den l x y : fractran_regular l -> l // x → y -> x = 0 -> y = 0.
Proof.
unfold fractran_regular.
intros H1 H2; revert H2 H1.
induction 1 as [ p q l x y H | p q l x y H1 H2 IH2 ]; rewrite Forall_cons_inv; simpl; intros (H3 & H4) ?; subst.
+ rewrite Nat.mul_0_r in H; apply mult_is_O in H; omega.
+ destruct H1; exists 0; ring.
Qed.
Fact fractran_step_no_zero_num l : Forall (fun c => fst c <> 0) l -> forall x y, l // x → y -> y = 0 -> x = 0.
Proof.
intros H1 x y H2; revert H2 H1.
induction 1 as [ p q l x y H1 | p q l x y H1 H2 IH2 ]; intros H3; rewrite Forall_cons_inv in H3; simpl in H3; destruct H3 as (H3 & H4); auto.
intros; subst y; rewrite Nat.mul_0_r in H1; symmetry in H1; apply mult_is_O in H1; omega.
Qed.
Fact fractran_rt_no_zero_den l n y : fractran_regular l -> fractran_steps l n 0 y -> y = 0.
Proof.
intros H; induction n as [ | n IHn ].
+ simpl; auto.
+ intros (x & H1 & H2).
apply fractran_step_no_zero_den with (1 := H) in H1; subst; auto.
Qed.
Fact fractran_rt_no_zero_num l : Forall (fun c => fst c <> 0) l -> forall n x, fractran_steps l n x 0 -> x = 0.
Proof.
intros H; induction n as [ | n IHn ]; intros x; simpl; auto.
intros (y & H1 & H2).
apply IHn in H2.
revert H1 H2; apply fractran_step_no_zero_num; auto.
Qed.
Fact fractran_zero_num l x : Exists (fun c => fst c = 0) l -> exists y, l // x → y.
Proof.
induction 1 as [ (p,q) l | (p,q) l Hl IHl ]; simpl in *.
+ exists 0; constructor 1; subst; ring.
+ destruct (divides_dec (p*x) q) as [ (y & Hy) | H ].
* exists y; constructor 1; rewrite Hy; ring.
* destruct IHl as (y & Hy); exists y; constructor 2; auto.
Qed.
Corollary FRACTRAN_HALTING_0_num l x : Exists (fun c => fst c = 0) l -> FRACTRAN_HALTING (l,x) <-> False.
Proof.
intros H1; split; try tauto; intros (y & H2 & H3).
destruct (fractran_zero_num y H1) as (z & ?).
apply (H3 z); auto.
Qed.
Lemma fractran_step_zero l : Forall (fun c => fst c <> 0) l -> forall x y, x <> 0 -> l // x → y <-> remove_zero_den l // x → y.
Proof.
induction 1 as [ | (p,q) l H1 H2 IH2 ]; intros x y Hxy; simpl in *.
* split; simpl; inversion 1.
* simpl; destruct (eq_nat_dec q 0) as [ Hq | Hq ].
- rewrite <- IH2; auto; subst; split; intros H.
+ apply fractran_step_cons_inv in H; destruct H as [ H | (H3 & H4) ]; auto.
simpl in H; symmetry in H; apply mult_is_O in H; omega.
+ constructor 2; auto; intros H'.
apply divides_0_inv, mult_is_O in H'; omega.
- split; intros H.
+ apply fractran_step_cons_inv in H; destruct H as [ H | (H3 & H4) ]; auto.
-- constructor 1; auto.
-- constructor 2; auto; apply IH2; auto.
+ apply fractran_step_cons_inv in H; destruct H as [ H | (H3 & H4) ]; auto.
-- constructor 1; auto.
-- constructor 2; auto; apply IH2; auto.
Qed.
Lemma fractran_rt_no_zero_den_0_0 l :
l <> nil -> fractran_regular l -> fractran_step l 0 0.
Proof.
destruct l as [ | (p,q) l ]; intros H1 H.
+ destruct H1; auto.
+ clear H1; apply Forall_cons_inv, proj1 in H.
constructor 1; ring.
Qed.
Corollary FRACTRAN_HALTING_l_0_no_zero_den l :
l <> nil -> fractran_regular l -> FRACTRAN_HALTING (l,0) <-> False.
Proof.
intros H1 H2; split; try tauto.
generalize (fractran_rt_no_zero_den_0_0 H1 H2); intros H3.
intros (y & (n & H5) & H6).
apply fractran_rt_no_zero_den in H5; auto; subst.
apply (H6 0); auto.
Qed.
Lemma FRACTRAN_HALTING_nil_x x : FRACTRAN_HALTING (nil,x) <-> True.
Proof.
split; try tauto; intros _.
exists x; split.
+ exists 0; simpl; auto.
+ inversion 1.
Qed.
Lemma FRACTRAN_HALTING_l_1_no_zero_den l x :
l <> nil
-> x <> 0
-> Forall (fun c => fst c <> 0) l
-> FRACTRAN_HALTING (l,x) <-> FRACTRAN_HALTING (remove_zero_den l,x).
Proof.
intros H1 H2 H3.
generalize (fractran_step_zero H3); intros H4.
assert (forall n y, fractran_steps l n x y -> y <> 0) as H5.
{ intros n y H ?; subst; apply H2; revert H; apply fractran_rt_no_zero_num; auto. }
assert (forall n y, fractran_steps (remove_zero_den l) n x y -> y <> 0) as H6.
{ intros n y H ?; subst; apply H2; revert H; apply fractran_rt_no_zero_num; auto; apply Forall_filter; auto. }
assert (forall n y, rel_iter (fractran_step l) n x y <-> rel_iter (fractran_step (remove_zero_den l)) n x y) as H7.
{ induction n as [ | n IHn ]; intros y.
+ simpl; try tauto.
+ do 2 rewrite rel_iter_S; split.
* intros (a & G1 & G2); exists a; split.
- apply IHn; auto.
- apply H4; auto.
apply H5 with (1 := G1).
* intros (a & G1 & G2); exists a; split.
- apply IHn; auto.
- apply H4; auto.
apply H6 with (1 := G1). }
split; intros (y & (n & G1) & G3); exists y; split.
+ exists n; apply H7; auto.
+ intros z Hz; apply (G3 z); revert Hz; apply H4, H5 with n; auto.
+ exists n; apply H7; auto.
+ intros z Hz; apply (G3 z); revert Hz; apply H4, H6 with n; auto.
Qed.
Lemma FRACTRAN_HALTING_hard p l :
p <> 0
-> FRACTRAN_HALTING ((p,0)::l,0)
<-> exists x, x <> 0 /\ FRACTRAN_HALTING ((p,0)::l,x).
Proof.
intros H; split.
+ intros (y & (n & H1) & H2).
assert (y <> 0) as Hy.
{ intro; subst; apply (H2 0); constructor; auto. }
unfold fractran_steps in H1; rewrite rel_iter_sequence in H1.
destruct H1 as (f & F1 & F2 & F3).
destruct (first_non_zero f n) as (i & G1 & G2 & G3); subst; auto.
exists (f (i+1)); split; auto.
exists (f n); split; auto.
exists (n-i-1); red; rewrite rel_iter_sequence.
exists (fun j => f (j+i+1)); split; auto.
split; [ f_equal; omega | ].
intros j Hj; apply F3; omega.
+ intros (x & H1 & (y & (n & Hn) & H2)).
exists y; split; auto.
exists (S n), x; split; auto.
constructor 1; ring.
Qed.
End zero_cases.
(* The case (l,0) where l does not contains (0,_) but is of the form (p,0)::_ (with p <> 0) is complicated
because first step could lead to any value and then we have to find some x <> 0 such that FRACTRAN_HALTING (l,x)
Summary: forall ll a list of nat*nat, x input
1) if (_,0) does not appear in ll, this is solved by FRACTRAN_HALTING_diophantine_0
2) if (_,0) occurs in ll
2.1) if (0,_) occurs in ll, then the program never halts
2.2) if (0,_) does not appear in ll
2.2.1) if x <> 0, the same halting as with removing all the (_,0) from ll
2.2.2) if x = 0,
2.2.2.1) if l starts with (_,0) let ll' be ll where (_,0) are removed
halting equivalent to exists y, y <> 0 /\ halting ll' y
2.2.2.2) if l starts with (_,q) and q <> 0, never halts
*)
Fact FRACTAN_cases ll : { Exists (fun c => fst c = 0) ll }
+ { Forall (fun c => snd c <> 0) ll }
+ { p : nat & { mm | Forall (fun c => fst c <> 0) ll /\ Exists (fun c => snd c = 0) ll
/\ ll = (p,0):: mm /\ p <> 0 } }
+ { p : nat & { q : nat & { mm | Forall (fun c => fst c <> 0) ll /\ Exists (fun c => snd c = 0) ll
/\ ll = (p,q):: mm /\ q <> 0 /\ p <> 0 } } }.
Proof.
destruct (Forall_Exists_dec (fun c : nat * nat => snd c <> 0)) with (l := ll) as [ ? | Hl1 ]; auto.
{ intros (p, q); destruct (eq_nat_dec q 0); simpl; subst; [ right | left]; omega. }
assert (Exists (fun c => snd c = 0) ll) as H1.
{ revert Hl1; induction 1; [ constructor 1 | constructor 2 ]; auto; omega. }
clear Hl1.
destruct (Forall_Exists_dec (fun c : nat * nat => fst c <> 0)) with (l := ll) as [ Hl3 | Hl3 ].
{ intros (p, q); destruct (eq_nat_dec p 0); simpl; subst; [ right | left ]; omega. }
2: { do 3 left; clear H1; revert Hl3; induction 1; [ constructor 1 | constructor 2 ]; auto; omega. }
case_eq ll.
{ intro; subst; exfalso; inversion H1. }
intros (p,q) mm Hll.
destruct (eq_nat_dec p 0) as [ Hp | Hp ].
{ subst; rewrite Forall_cons_inv in Hl3; simpl in Hl3; omega. }
destruct q.
+ left; right; exists p, mm; subst; auto.
+ right; exists p, (S q), mm; subst; repeat (split; auto).
Qed.
End fractran.
Notation "l '/F/' x ↓ " := (fractran_terminates l x) (at level 70, no associativity).