(**************************************************************)
(* Copyright Dominique Larchey-Wendling * *)
(* *)
(* * Affiliation LORIA -- CNRS *)
(**************************************************************)
(* This file is distributed under the terms of the *)
(* CeCILL v2 FREE SOFTWARE LICENSE AGREEMENT *)
(**************************************************************)
(* Copyright Dominique Larchey-Wendling * *)
(* *)
(* * Affiliation LORIA -- CNRS *)
(**************************************************************)
(* This file is distributed under the terms of the *)
(* CeCILL v2 FREE SOFTWARE LICENSE AGREEMENT *)
(**************************************************************)
Require Import List Arith Omega.
Require Import utils pos vec.
Require Import subcode sss mm_defs.
Set Implicit Arguments.
Tactic Notation "rew" "length" := autorewrite with length_db.
Local Notation "e #> x" := (vec_pos e x).
Local Notation "e [ v / x ]" := (vec_change e x v).
Local Notation "I // s -1> t" := (mm_sss I s t).
Local Notation "P // s -[ k ]-> t" := (sss_steps (@mm_sss _) P k s t).
Local Notation "P // s -+> t" := (sss_progress (@mm_sss _) P s t).
Local Notation "P // s ->> t" := (sss_compute (@mm_sss _) P s t).
Local Notation "P // s '~~>' t" := (sss_output (@mm_sss _) P s t).
Local Notation "P // s ↓" := (sss_terminates (@mm_sss _) P s).
Section self_loops.
Variables (n : nat) (P : list (mm_instr n)).
Lemma mm_self_loop_no_term_1 i x s v :
(i,DEC x i::nil) <sc (1,P)
-> s = (i,v)
-> v#>x = 0
-> ~ (1,P) // s ↓.
Proof.
intros H1 H2 H3 (s0 & H4).
revert i x v H1 H2 H3.
pattern s; revert H4; apply mm_term_ind.
+ intros Hs0 i x v H1 H2 H3.
subst s0.
revert Hs0; apply in_out_code.
apply subcode_in_code with (1 := H1).
simpl; omega.
+ intros i ρ v j w H1 H2 H3 IH3 k x p G1 G2 G3.
inversion G2; subst p k.
generalize (subcode_cons_inj _ _ _ _ H1 G1); intros; subst.
apply mm_sss_DEC0_inv in H2; auto.
destruct H2; subst j w.
apply (IH3 _ _ _ G1 eq_refl); auto.
Qed.
Lemma mm_self_loop_no_term_2 i x s v :
(i,DEC x (1+i)::DEC x i::nil) <sc (1,P)
-> s = (i,v) \/ s = (1+i,v)
-> v#>x = 0
-> ~ (1,P) // s ↓.
Proof.
intros H1 H2 H3 (s0 & H4).
revert v H2 H3.
pattern s; revert H4; apply mm_term_ind.
+ intros Hs0 v H2 H3.
destruct H2; subst s0; revert Hs0; apply in_out_code;
apply subcode_in_code with (1 := H1); simpl; omega.
+ apply subcode_cons_invert_left in H1.
destruct H1 as [ G0 G1 ].
intros l ρ v j w H1 H2 H3 IH3 r G2 G3.
destruct G2 as [ G2 | G2 ]; inversion G2; subst l v.
* generalize (subcode_cons_inj _ _ _ _ H1 G0); intros; subst.
apply mm_sss_DEC0_inv in H2; auto.
destruct H2; subst j w.
revert G3; apply IH3; auto.
* generalize (subcode_cons_inj _ _ _ _ H1 G1); intros; subst.
apply mm_sss_DEC0_inv in H2; auto.
destruct H2; subst j w.
revert G3; apply IH3; auto.
Qed.
End self_loops.
Section no_self_loops.
Variables (n : nat).
Definition mm_no_self_loops (Q : nat * list (mm_instr n)) := forall i x, ~ (i,DEC x i::nil) <sc Q.
Implicit Types (P Q : list (mm_instr n)).
Fact mm_no_self_loops_app i P Q : mm_no_self_loops (i,P)
-> mm_no_self_loops (length P +i,Q)
-> mm_no_self_loops (i,P++Q).
Proof.
intros H1 H2 j x H.
apply subcode_app_invert_right in H.
destruct H as [ H | H ]; revert H.
+ apply H1.
+ apply H2.
Qed.
End no_self_loops.
Section remove_self_loops.
To safely remove self loops from (1,P)
1/ we map them to 2+lP
2/ we map outside jumps to 0
3/ we append to P to 3 following instructions
1+lP: DEC nv 0; DEC nv 3+lP; DEC nv 2+lP
where nv is a new and unused variable
Variables (n : nat).
Implicit Types (P Q : list (mm_instr n)).
Let f k i (ρ : mm_instr n) :=
match ρ with
| INC x => INC (pos_nxt x)
| DEC x j => DEC (pos_nxt x) (if eq_nat_dec i j then 1+k
else if le_lt_dec k j then 0
else j)
end.
Let Fixpoint g k i P :=
match P with
| nil => nil
| ρ::P => f k i ρ :: g k (S i) P
end.
Let g_app k i P Q : g k i (P++Q) = g k i P ++ g k (length P + i) Q.
Proof.
revert i; induction P as [ | ? P IHP ]; intros i; simpl; f_equal; auto.
rewrite IHP; do 2 f_equal; omega.
Qed.
Let g_app_inv k i P l r : g k i P = l ++ r -> exists L R, P = L++R /\ l = g k i L /\ r = g k (length l+i) R.
Proof.
revert i l r.
induction P as [ | ρ P IHP ]; intros i l r; simpl.
+ intros H; symmetry in H; exists nil, nil; simpl.
apply app_eq_nil in H; tauto.
+ destruct l as [ | y l ]; simpl.
* exists nil, (ρ::P); simpl in *; auto.
* intros H; injection H; clear H; intros H1 H2.
destruct IHP with (1 := H1) as (L & R & G1 & G2 & G3); subst.
exists (ρ::L), R; simpl; repeat (split; auto).
f_equal; omega.
Qed.
Let length_g l i P : length (g l i P) = length P.
Proof. revert i; induction P; simpl; auto. Qed.
Let g_subcode k i P j ρ : (j,ρ::nil) <sc (i,P) -> (j, f k j ρ::nil) <sc (i,g k i P).
Proof.
intros (l & r & H1 & H2); subst P.
rewrite g_app; simpl.
exists (g k i l), (g k (S (length l+i)) r); split.
+ do 3 f_equal; omega.
+ rewrite length_g; auto.
Qed.
Let subcode_g k i P j ρ : (j,ρ::nil) <sc (i,g k i P) -> exists ρ', (j,ρ'::nil) <sc (i,P) /\ ρ = f k j ρ'.
Proof.
intros (l & r & H1 & H2).
apply g_app_inv in H1.
destruct H1 as (L & [ | ρ' R ] & H1 & H3 & H4); try discriminate.
simpl in H4; inversion H4.
exists ρ'; split; auto.
+ exists L, R; simpl; split; auto.
rewrite H3, length_g in H2; auto.
+ f_equal; omega.
Qed.
Let g_loops k i P : 1 <= i -> i+length P <= k -> mm_no_self_loops (i,g k i P).
Proof.
intros H0 H1 j x H2.
apply subcode_g in H2.
destruct H2 as ([ y | y q ] & H2 & H3); simpl in H3; try discriminate.
inversion H3; subst; simpl in H1.
apply subcode_in_code with (i:= j) in H2; simpl in H2 |- *; try omega.
destruct (eq_nat_dec j q); try omega.
destruct (le_lt_dec k q); omega.
Qed.
Variable P : list (mm_instr n).
Notation lP := (length P).
Let R : list (mm_instr (S n)) := DEC pos0 0
:: DEC pos0 (3+lP)
:: DEC pos0 (2+lP)
:: nil.
Let sc_R_1 : (1+lP, DEC pos0 0 :: nil) <sc (1+lP, R).
Proof. unfold R; auto. Qed.
Let sc_R_2 : (2+lP, DEC pos0 (1+(2+lP)) :: DEC pos0 (2+lP) :: nil) <sc (1+lP, R).
Proof.
unfold R; rewrite plus_assoc; simpl plus.
exists (DEC pos0 0 :: nil), nil; simpl; split; auto; omega.
Qed.
Let R_sc i rho : (i,rho::nil) <sc (1+lP,R) -> i = 1+lP /\ rho = DEC pos0 0
\/ i = 2+lP /\ rho = DEC pos0 (3+lP)
\/ i = 3+lP /\ rho = DEC pos0 (2+lP).
Proof.
unfold R; intros ([ | u [ | v [ | w l ] ] ] & r & H1 & H2); inversion H1; subst i; simpl.
+ do 0 right; left; split; auto; omega.
+ do 1 right; left; split; auto; omega.
+ do 2 right; split; auto; omega.
+ destruct l; discriminate.
Qed.
Let R_no_self_loops : mm_no_self_loops (1+lP,R).
Proof.
intros i rho H.
apply R_sc in H.
destruct H as [ (H1 & H2) | H ].
{ inversion H2; omega. }
destruct H as [ (H1 & H2) | H ].
{ inversion H2; omega. }
destruct H as (H1 & H2).
{ inversion H2; omega. }
Qed.
Let Q := g (1+lP) 1 P ++ R.
Let Q_no_self_loops : mm_no_self_loops (1,Q).
Proof.
apply mm_no_self_loops_app.
+ apply g_loops; simpl; omega.
+ rewrite length_g, plus_comm; auto.
Qed.
Let sc_Q_1 j ρ : (j,ρ::nil) <sc (1,P) -> (j, f (1+lP) j ρ::nil) <sc (1,Q).
Proof. intro; apply subcode_app_end, g_subcode; auto. Qed.
Let sc_Q_2 : (1+lP, DEC pos0 0 :: DEC pos0 (3+lP) :: DEC pos0 (2+lP) :: nil) <sc (1,Q).
Proof. apply subcode_right; rewrite length_g; auto. Qed.
Let sc_Q_3 : (2+lP, DEC pos0 (3+lP) :: DEC pos0 (2+lP) :: nil) <sc (1,Q).
Proof. apply subcode_trans with (2 := sc_Q_2); auto. Qed.
Let Q_sc j ρ : (j,ρ::nil) <sc (1,Q)
-> (exists ρ', (j,ρ'::nil) <sc (1,P) /\ ρ = f (1+lP) j ρ')
\/ j = 1+lP /\ ρ = DEC pos0 0
\/ j = 2+lP /\ ρ = DEC pos0 (3+lP)
\/ j = 3+lP /\ ρ = DEC pos0 (2+lP).
Proof.
intros H.
apply subcode_app_invert_right in H.
destruct H as [ H | H ].
+ apply subcode_g in H; auto.
+ rewrite length_g, plus_comm in H.
apply R_sc in H; auto.
Qed.
Let Q_length : length Q = length P + 3.
Proof.
unfold Q; rewrite app_length, length_g.
unfold R; auto.
Qed.
Let Q_bound i x j : (i,DEC x j::nil) <sc (1,Q) -> j < 1+length Q.
Proof.
rewrite Q_length; intros H.
apply Q_sc in H.
destruct H as [ (rho & H1 & H2) | H ].
{ destruct rho as [ | y p ]; try discriminate.
unfold f in H2.
destruct (eq_nat_dec i p).
{ inversion H2; omega. }
destruct (le_lt_dec (1+lP) p); inversion H2; omega. }
destruct H as [ (H1 & H2) | H ].
{ inversion H2; omega. }
destruct H as [ (H1 & H2) | H ].
{ inversion H2; omega. }
destruct H as (H1 & H2).
{ inversion H2; omega. }
Qed.
Let P_imp_Q s s0 : in_code (fst s) (1,P) -> (1,P) // s ~~> s0 -> (1,Q) // (fst s, 0##snd s) ↓.
Proof.
intros H1 H; revert H1.
pattern s; revert s H; apply mm_term_ind.
+ simpl; intros; omega.
+ intros i [ x | x p ] v j w H1 H2 H3 H5 H4; unfold fst, snd in *.
* apply mm_sss_INC_inv in H2.
destruct H2 as (G1 & G2).
destruct (eq_nat_dec i lP) as [ Hi | Hi ].
- exists (0,0##w); split; try (simpl; omega).
apply sc_Q_1 in H1; simpl f in H1.
mm sss INC with (pos_nxt x).
subst i; clear H1; mm sss DEC 0 with pos0 0.
mm sss stop; f_equal; simpl; subst; auto.
- spec in H5. { subst j; simpl in H4 |- *; omega. }
apply sc_Q_1 in H1; simpl f in H1.
apply subcode_sss_terminates_instr with (2 := H1) (3 := H5).
subst; constructor.
* generalize H1; intros H6.
apply sc_Q_1 in H6; unfold f in H6.
case_eq (v#>x).
++ intros Hx.
destruct (eq_nat_dec i p) as [ Hip | Hip ].
-- subst p.
destruct mm_self_loop_no_term_1 with (s := (i,v)) (v := v) (1 := H1); auto.
exists s0.
destruct H3 as [ H3 H7 ]; split; auto.
apply subcode_sss_compute_instr with (1 := H2) (3 := H3); auto.
-- destruct (le_lt_dec (1+lP) p) as [ Hp1 | Hp1 ];
[ | destruct (eq_nat_dec p 0) as [ Hp2 | Hp2 ] ].
** exists (0,0##v); split; try (simpl; omega).
mm sss DEC 0 with (pos_nxt x) 0.
mm sss stop.
** subst p; exists (0,0##v); split; try (simpl; omega).
mm sss DEC 0 with (pos_nxt x) 0.
mm sss stop.
** apply mm_sss_DEC0_inv with (1 := Hx) in H2.
destruct H2; subst j w.
spec in H5. { simpl; omega. }
apply subcode_sss_terminates_instr with (2 := H6) (3 := H5).
constructor; simpl; auto.
++ intros u Hx.
apply mm_sss_DEC1_inv with (1 := Hx) in H2.
destruct H2 as [ ? H2 ]; subst j.
destruct (eq_nat_dec i lP) as [ Hi | Hi ].
-- exists (0,0##w); split; simpl; auto.
apply subcode_sss_compute_instr with (2 := H6) (st2 := (1+i,0##w)); auto.
** replace (0##w) with ((0##v)[u/pos_nxt x]); subst; auto; constructor; auto.
** subst i; mm sss DEC 0 with pos0 0; mm sss stop.
-- spec in H5. { simpl in H4 |- *; omega. }
apply subcode_sss_terminates_instr with (2 := H6) (3 := H5); auto.
replace (0##w) with ((0##v)[u/pos_nxt x]); subst; auto; constructor; auto.
Qed.
Let Q_imp_P s s0 : in_code (fst s) (1,P) -> (snd s)#>pos0 = 0 -> (1,Q) // s ~~> s0 -> (1,P) // (fst s, vec_tail (snd s)) ↓.
Proof.
intros H1 H2 H3; revert H1 H2.
pattern s; revert s H3; apply mm_term_ind.
+ simpl; intros; omega.
+ intros i ρ v j w H1 H2 H3 H4 H5 H6; unfold fst, snd in *.
rewrite (vec_head_tail v) in H2, H6.
revert H2 H6.
generalize (vec_head v) (vec_tail v); clear v; intros x v; simpl; intros H2 H6; subst x.
destruct Q_sc with (1 := H1) as [ ([ x | x p ] & G1 & G2) | G1 ]; try subst ρ.
* unfold f in H2.
apply mm_sss_INC_inv in H2.
destruct H2 as (? & H2); subst j w.
revert H4; rew vec; simpl; intros H4.
destruct (eq_nat_dec i lP) as [ Hi | Hi ].
- exists (S i, v[(S (v#>x))/x]); split; try (simpl; omega).
mm sss INC with x; mm sss stop.
- spec in H4. simpl in H5; omega. spec in H4; auto.
apply subcode_sss_terminates_instr with (2 := G1) (3 := H4); auto; constructor.
* unfold f in H2; case_eq (v#>x).
- intros Hx.
apply mm_sss_DEC0_inv in H2; auto.
destruct H2; subst j w.
destruct (eq_nat_dec i p) as [ Hip | Hip ].
** subst p; exfalso.
generalize (ex_intro _ s0 H3); simpl.
change (~ (1,Q) // (2+lP,0##v) ↓).
apply mm_self_loop_no_term_2 with (v := 0##v) (1 := sc_Q_3); auto.
** destruct (le_lt_dec (1+lP) p) as [ Hp | Hp ];
[ | destruct (eq_nat_dec p 0) as [ Hp2 | Hp2 ] ].
++ exists (p,v); split; try (simpl; omega).
mm sss DEC 0 with x p; mm sss stop.
++ exists (p,v); split; try (simpl; omega).
mm sss DEC 0 with x p; mm sss stop.
++ spec in H4. simpl in H5 |- *; omega.
spec in H4; auto.
apply subcode_sss_terminates_instr with (2 := G1) (3 := H4); auto; constructor.
simpl; auto.
- intros u Hx.
apply mm_sss_DEC1_inv with (u := u) in H2; auto.
destruct H2; subst j w.
simpl in H4.
destruct (eq_nat_dec i lP) as [ Hi | Hi ].
** exists (S i, v[u/x]); split; try (simpl; omega).
mm sss DEC S with x p u; mm sss stop.
** spec in H4. simpl in H5; omega.
spec in H4; auto.
apply subcode_sss_terminates_instr with (2 := G1) (3 := H4); auto.
constructor; auto.
* destruct G1 as [ (? & _) | [ (? & _) | (? & _) ] ]; simpl in H5; omega.
Qed.
Theorem mm_remove_self_loops : { Q | mm_no_self_loops (1,Q)
/\ (forall i x j, (i,DEC x j::nil) <sc (1,Q) -> j < 1+length Q)
/\ forall v, (1,P) // (1,v) ↓ <-> (1,Q) // (1,0##v) ↓ }.
Proof.
destruct (eq_nat_dec lP 0) as [ HlP | HlP ].
+ exists nil.
split; [ | split ].
- intros i rho ([ | ] & ? & ? & ?); discriminate.
- intros i x j ([ | ] & ? & ? & ?); discriminate.
- destruct P; try discriminate.
split.
* exists (1,0##v); split; simpl; try omega; mm sss stop.
* exists (1,v); split; simpl; try omega; mm sss stop.
+ exists Q; split; auto; split; auto; intros v; split.
* intros (s0 & H); revert H; apply P_imp_Q; simpl; omega.
* intros (s0 & H); revert H; apply Q_imp_P; simpl; omega.
Qed.
End remove_self_loops.