(**************************************************************)
(* Copyright Dominique Larchey-Wendling * *)
(* *)
(* * Affiliation LORIA -- CNRS *)
(**************************************************************)
(* This file is distributed under the terms of the *)
(* CeCILL v2 FREE SOFTWARE LICENSE AGREEMENT *)
(**************************************************************)
Require Import List Arith Omega.
Require Import ILL.Definitions.
Require Import utils pos vec.
Require Import subcode sss mm_defs.
Require Import eill eill_mm.
Local Notation "P '/MM/' s ->> t" := (sss_compute (@mm_sss _) P s t) (at level 70, no associativity).
Local Notation "P '/MM/' s ~~> t" := (sss_output (@mm_sss _) P s t) (at level 70, no associativity).
Section MM_HALTING_EILL_PROVABILITY.
Let f : MM_PROBLEM -> EILL_SEQUENT.
Proof.
intros (n & P & v).
exact (Sig (1,P) 0, vec_map_list v (fun p : pos n => pos2nat p), 2 * n + 1).
Defined.
Theorem MM_HALTS_ON_ZERO_EILL_PROVABILITY : MM_HALTS_ON_ZERO ⪯ EILL_PROVABILITY.
Proof.
exists f.
intros (n & P & v); simpl.
rewrite <- G_eill_mm; simpl; auto.
split.
+ intros (? & _); auto.
+ split; simpl; auto.
Qed.
End MM_HALTING_EILL_PROVABILITY.
(* Copyright Dominique Larchey-Wendling * *)
(* *)
(* * Affiliation LORIA -- CNRS *)
(**************************************************************)
(* This file is distributed under the terms of the *)
(* CeCILL v2 FREE SOFTWARE LICENSE AGREEMENT *)
(**************************************************************)
Require Import List Arith Omega.
Require Import ILL.Definitions.
Require Import utils pos vec.
Require Import subcode sss mm_defs.
Require Import eill eill_mm.
Local Notation "P '/MM/' s ->> t" := (sss_compute (@mm_sss _) P s t) (at level 70, no associativity).
Local Notation "P '/MM/' s ~~> t" := (sss_output (@mm_sss _) P s t) (at level 70, no associativity).
Section MM_HALTING_EILL_PROVABILITY.
Let f : MM_PROBLEM -> EILL_SEQUENT.
Proof.
intros (n & P & v).
exact (Sig (1,P) 0, vec_map_list v (fun p : pos n => pos2nat p), 2 * n + 1).
Defined.
Theorem MM_HALTS_ON_ZERO_EILL_PROVABILITY : MM_HALTS_ON_ZERO ⪯ EILL_PROVABILITY.
Proof.
exists f.
intros (n & P & v); simpl.
rewrite <- G_eill_mm; simpl; auto.
split.
+ intros (? & _); auto.
+ split; simpl; auto.
Qed.
End MM_HALTING_EILL_PROVABILITY.