From Undecidability Require Export Reductions Problems.PCP.
Lemma stack_discrete :
discrete (stack bool).
Proof.
eapply discrete_iff; econstructor. intros ? ?. hnf. repeat decide equality.
Qed.
Lemma stack_enum :
enumerable__T (stack bool).
Proof.
apply enumerable__T_list, enumerable__T_prod;
apply enumerable__T_list, count_bool.
Qed.
Fixpoint L_PCP n : list (BSRS * (string bool * string bool)) :=
match n with
| 0 => []
| S n => L_PCP n
++ [ (C, (x, y)) | (C, x, y) ∈ (L_T BSRS n × L_T (string bool) n × L_T (string bool) n), (x/y) el C ]
++ [ (C, (x ++ u, y ++ v)) | ( (C, (u,v)), x, y) ∈ (L_PCP n × L_T (string bool) n × L_T (string bool) n), (x,y) el C ]
end.
Lemma enum_PCP' :
enum (fun '(C, (u, v)) => @derivable bool C u v) L_PCP.
Proof.
split.
- eauto.
- intros ( C & u & v ). split.
+ induction 1.
* destruct (el_T C) as [m1], (el_T x) as [m2], (el_T y) as [m3].
exists (1 + m1 + m2 + m3). cbn. in_app 2.
in_collect (C, x, y); eapply cum_ge'; eauto; omega.
* destruct IHderivable as [m1], (el_T x) as [m2], (el_T y) as [m3].
exists (1 + m1 + m2 + m3). cbn. in_app 3.
in_collect ( (C, (u, v), x, y)); eapply cum_ge'; eauto; try omega.
+ intros [m]. revert C u v H. induction m; intros.
* inv H.
* cbn in H. inv_collect; inv H; eauto using derivable.
Qed.
Lemma enumerable_derivable : enumerable (fun '(C, (u, v)) => @derivable bool C u v).
Proof.
eapply enum_count. intros; repeat decide equality. eapply enum_PCP'.
Qed.
Lemma enumerable_PCP : enumerable BPCP'.
Proof.
pose proof enumerable_derivable.
assert (enumerable (X := (stack bool * (string bool * string bool))) (fun '(C, (s, t)) => s = t)). {
eapply dec_count_enum.
- eapply decidable_iff. econstructor. intros (? & ? & ?). exact _.
- eapply enum_enumT. econstructor. exact _.
}
unshelve epose proof (enumerable_conj _ H H0).
- eapply discrete_iff. econstructor. exact _.
- eapply projection in H1 as [f]. exists f.
intros. rewrite <- H1. intuition.
+ destruct H2 as [u]. exists (u,u). eauto.
+ destruct H2 as [[u v] [? ->]]. exists v. eauto.
Qed.