Require Import List Arith Omega.
From Undecidability.Shared.Libs.DLW Require Import Utils.utils.
Set Implicit Arguments.
Section subcode.
Variable (X : Type).
Definition code := (nat * list X)%type.
Implicit Type P : code.
Definition code_start P := fst P.
Definition code_end P := fst P + length (snd P).
Definition code_length P := length (snd P).
Definition in_code i P := code_start P <= i < code_end P.
Definition out_code i P := i < code_start P \/ code_end P <= i.
Fact in_out_code i P : in_code i P -> out_code i P -> False.
Proof. unfold in_code, out_code; omega. Qed.
Definition subcode P Q :=
match P, Q with (i,li), (n,code) => exists l r, code = l ++ li ++ r /\ i = n+length l end.
Arguments code_start P /.
Arguments code_end P /.
Arguments code_length P /.
Arguments in_code i P /.
Arguments out_code i P /.
Arguments subcode P Q /.
Fact in_out_code_dec i P : { in_code i P } + { out_code i P }.
Proof. destruct P as (n,c); simpl; apply interval_dec. Qed.
Infix "<sc" := subcode (at level 70, no associativity).
Fact subcode_cons_inj i ρ δ P : (i,ρ::nil) <sc P -> (i,δ::nil) <sc P -> ρ = δ.
Proof.
destruct P as (j, P).
intros (l1 & r1 & H1 & H2) (l2 & r2 & H3 & H4).
rewrite H1 in H3.
apply list_app_inj, proj2 in H3; try omega.
inversion H3; trivial.
Qed.
Fact subcode_length P Q : P <sc Q -> code_start Q <= code_start P /\ code_end P <= code_end Q.
Proof.
destruct P as (iP,cP); destruct Q as (iQ,cQ); simpl.
intros (l & r & H1 & H2).
apply f_equal with (f := @length _) in H1.
revert H1; rew length; split; omega.
Qed.
Fact subcode_length' P Q : P <sc Q -> length (snd P) <= length (snd Q).
Proof.
revert P Q; intros [] [] (? & ? & ? & ?); simpl; subst; rew length; omega.
Qed.
Fact subcode_length_le : forall P Q, P <sc Q -> fst Q <= fst P
/\ fst P + length (snd P) <= fst Q + length (snd Q).
Proof.
intros (iP,cP) (iQ,cQ) (l & r & ? & ?); subst; simpl; rew length; omega.
Qed.
Fact subcode_start_in_code : forall P Q, 0 < code_length P -> P <sc Q -> in_code (code_start P) Q.
Proof.
intros (iP,cP) (iQ,cQ) H (l & r & H1 & H2); simpl in *; subst; revert H; rew length; intro; omega.
Qed.
Fact subcode_refl P : P <sc P.
Proof.
destruct P; exists nil, nil; split; simpl.
rewrite <- app_nil_end; auto.
omega.
Qed.
Fact subcode_trans P Q R : P <sc Q -> Q <sc R -> P <sc R.
Proof.
revert P Q R; intros (iP,cP) (iQ,cQ) (iR,cR).
intros (ll1 & rr1 & H1 & H2) (ll2 & rr2 & H3 & H4); subst.
exists (ll2++ll1), (rr1++rr2); split.
solve list eq.
rew length; omega.
Qed.
Fact subcode_in_code P Q i : P <sc Q -> in_code i P -> in_code i Q.
Proof.
revert P Q; intros (iP,cP) (iQ,cQ) (l & r & H1 & H2); simpl.
subst; rew length; omega.
Qed.
Fact subcode_out_code P Q i : P <sc Q -> out_code i Q -> out_code i P.
Proof.
revert P Q; intros (iP,cP) (iQ,cQ) (l & r & H1 & H2); simpl.
subst; rew length; omega.
Qed.
Fact subcode_left n m l r : n = m -> (n,l) <sc (m,l++r).
Proof. exists nil, r; simpl; split; auto; omega. Qed.
Fact subcode_right n m l r : n = m+length l -> (n,r) <sc (m,l++r).
Proof.
exists l, nil; split; auto.
rewrite <- app_nil_end; auto.
Qed.
Fact subcode_app_end P n l r : P <sc (n,l) -> P <sc (n,l++r).
Proof.
intros; apply subcode_trans with (1 := H).
exists nil, r; auto.
Qed.
Fact subcode_cons P n x l : P <sc (1+n,l) -> P <sc (n,x::l).
Proof.
intros; apply subcode_trans with (1 := H).
exists (x::nil), nil; split.
solve list eq.
rew length; omega.
Qed.
Fact in_code_subcode i P : in_code i P -> exists a, (i,a::nil) <sc P.
Proof.
destruct P as (iP,cP); simpl; intros H.
destruct (list_split_length cP) with (k := i-iP) as (l & [ | a r ] & H1 & H2).
omega.
exfalso; subst; solve list eq in H; omega.
exists a, l, r; split; auto; omega.
Qed.
Fact subcode_app_invert_right j Q1 Q2 i I :
(i,I::nil) <sc (j,Q1++Q2) -> (i,I::nil) <sc (j,Q1)
\/ (i,I::nil) <sc (length Q1+j,Q2).
Proof.
intros (l & r & H1 & H2); simpl in *.
apply list_app_cons_eq_inv in H1.
destruct H1 as [ (m & G1 & G2) | (m & G1 & G2) ]; subst.
+ right; exists m, r; rew length; split; auto; omega.
+ left; exists l, m; rew length; split; auto; omega.
Qed.
Fact subcode_cons_invert_right j J Q i I :
(i,I::nil) <sc (j,J::Q) -> i = j /\ I = J
\/ (i,I::nil) <sc (S j,Q).
Proof.
intros ([ | K l ] & r & H1 & H2); simpl in *.
+ inversion H1; left; split; auto; omega.
+ right; inversion H1; exists l, r; split; auto; omega.
Qed.
Variable Q : code.
Fact subcode_app_inv i j a l r : j = i+length l -> (i,l++a++r) <sc Q -> (j,a) <sc Q.
Proof.
intro; apply subcode_trans.
exists l, r; auto.
Qed.
Fact subcode_cons_inv i j a r : j = i -> (i,a++r) <sc Q -> (j,a) <sc Q.
Proof.
intro; apply subcode_app_inv with (l := nil); simpl; omega.
Qed.
Fact subcode_snoc_inv i j a l : j = i+length l -> (i,l++a) <sc Q -> (j,a) <sc Q.
Proof.
intros H.
apply subcode_trans.
exists l, nil; split; auto.
solve list eq.
Qed.
Fact subcode_cons_invert_left i I l : (i,I::l) <sc Q -> (i,I::nil) <sc Q /\ (S i,l) <sc Q.
Proof.
intros H1; split.
+ revert H1; apply subcode_cons_inv with (a := _::nil); auto.
+ revert H1; apply subcode_snoc_inv with (l := _::nil); simpl; omega.
Qed.
End subcode.
Arguments code_start {X} P /.
Arguments code_end {X} P /.
Arguments in_code {X} i P /.
Arguments out_code {X} i P /.
Arguments subcode {X} P Q /.
Infix "<sc" := subcode (at level 70, no associativity).
Ltac subcode_tac :=
unfold fst, snd;
try match goal with | H: subcode (_,?l) ?c |- subcode (_,?i) ?c
=> (match i with ?j::nil => match type of H with context[j] => apply subcode_trans with (2 := H) end end ||
match type of H with context[i] => apply subcode_trans with (2 := H) end)
end;
match goal with
| |- subcode (_,?i) (_,?c) => focus_goal i c
end;
match goal with
| |- subcode (_,?i::nil) (_,?l++?i::?r) => exists l, r
| |- subcode _ (_,?l++_++?r) => exists l, r
| |- subcode (_,?i) (_,?l++?i) => exists l, nil
end;
split; auto; rew length; try omega.
Hint Extern 4 (subcode _ _) => subcode_tac.