Require Import List Arith Omega.

From Undecidability.Shared.Libs.DLW Require Import Utils.utils Vec.pos Vec.vec.
From Undecidability.ILL.Code Require Import subcode sss.
From Undecidability.ILL.Bsm Require Import list_bool.
From Undecidability.ILL.Mm Require Import mm_defs.

Set Implicit Arguments.

Tactic Notation "rew" "length" := autorewrite with length_db.

Local Notation "e #> x" := (vec_pos e x).
Local Notation "e [ v / x ]" := (vec_change e x v).

Local Notation "P // s -[ k ]-> t" := (sss_steps (@mm_sss _) P k s t).
Local Notation "P // s -+> t" := (sss_progress (@mm_sss _) P s t).
Local Notation "P // s ->> t" := (sss_compute (@mm_sss _) P s t).

Simulating Binary Stacks with numbers


Section Minsky_Machine_utils.

  Variable (n : nat).

  Ltac dest x y := destruct (pos_eq_dec x y) as [ | ]; [ subst x | ]; rew vec.

  Section mm_null.

    Variable (src zero : pos n) (Hsz : src <> zero).

    Definition mm_null i := DEC src (2+i) :: DEC zero i :: nil.

    Fact mm_null_length i : length (mm_null i) = 2.
    Proof. auto. Qed.

    Let mm_null_spec i k v w : v#>src = k
                               -> v#>zero = 0
                               -> w = v[0/src]
                               -> (i,mm_null i) // (i,v) -+> (2+i,w).
    Proof.
      unfold mm_null.
      revert v w.
      induction k as [ | k IHk ]; intros v w H1 H2 H3; subst w.

      mm sss DEC 0 with src (2+i).
      mm sss stop; f_equal.
      apply vec_pos_ext; intros z; dest z src.

      mm sss DEC S with src (2+i) k.
      mm sss DEC 0 with zero i; rew vec.
      apply sss_progress_compute.
      apply IHk; rew vec.
    Qed.

    Fact mm_null_progress i v st :
             v#>zero = 0
          -> st = (2+i,v[0/src])
          -> (i,mm_null i) // (i,v) -+> st.
    Proof.
      intros; subst.
      apply mm_null_spec with (1 := eq_refl); auto.
    Qed.

  End mm_null.

  Hint Rewrite mm_null_length : length_db.

  Section mm_nullify.


    Variable (zero : pos n).

    Fixpoint mm_nullify i lr :=
      match lr with
        | nil => nil
        | x::lr => mm_null x zero i ++ mm_nullify (2+i) lr
      end.

    Fact mm_nullify_length i lr : length (mm_nullify i lr) = 2*length lr.
    Proof.
      revert i; induction lr as [ | x lr IH ]; simpl; intros i; auto.
      rewrite IH; omega.
    Qed.

    Fact mm_nullify_compute i lr v w :
            v#>zero = 0
         -> (forall p, In p lr -> p <> zero)
         -> (forall p, In p lr -> w#>p = 0)
         -> (forall p, ~ In p lr -> w#>p = v#>p)
         -> (i,mm_nullify i lr) // (i,v) ->> (length (mm_nullify i lr)+i,w).
    Proof.
      rewrite mm_nullify_length.
      revert i v w; induction lr as [ | x lr IH ]; intros i v w H1 H2 H3 H4.

      mm sss stop; f_equal.
      apply vec_pos_ext; intros; rewrite H4; auto.

      rew length.
      unfold mm_nullify; fold mm_nullify.
      apply sss_compute_trans with (2+i,v[0/x]).
      apply subcode_sss_compute with (P := (i,mm_null x zero i)); auto.
      apply sss_progress_compute, mm_null_progress; auto.
      apply H2; left; auto.

      apply subcode_sss_compute with (P := (2+i,mm_nullify (2+i) lr)).
      subcode_tac; solve list eq.
      replace (2*S (length lr)+i) with (2*(length lr)+(2+i)) by omega.
      apply IH.
      specialize (H2 x (or_introl eq_refl)); rew vec.
      intros; apply H2; right; auto.
      intros; apply H3; right; auto.
      intros p Hp.
      dest p x.
      apply H3; left; auto.
      apply H4; intros [|]; auto.
    Qed.

  End mm_nullify.

  Section transfert.

    Variables (src dst zero : pos n).

    Hypothesis (Hsd : src <> dst) (Hsz : src <> zero) (Hdz : dst <> zero).

    Definition mm_transfert i := DEC src (3+i) :: INC dst :: DEC zero i :: nil.

    Fact mm_transfert_length i : length (mm_transfert i) = 3.
    Proof. reflexivity. Qed.

    Let mm_transfert_spec i v w k x : v#>src = k
                                    -> v#>dst = x
                                    -> v#>zero = 0
                                    -> w = v[0/src][(k+x)/dst]
                                    -> (i,mm_transfert i) // (i,v) -+> (3+i,w).
    Proof.
      unfold mm_transfert.
      revert v w x.
      induction k as [ | k IHk ]; intros v w x H1 H2 H3 H4; subst w.

      mm sss DEC 0 with src (3+i).
      mm sss stop; f_equal; auto.
      apply vec_pos_ext; intros p.
      dest p dst; dest p src.

      mm sss DEC S with src (3+i) k.
      mm sss INC with dst.
      mm sss DEC 0 with zero i; rew vec.
      replace (S k + x) with (k + S x) by omega.
      apply sss_progress_compute.
      apply IHk with (S x); rew vec.
      apply vec_pos_ext; intros p.
      dest p dst; dest p src.
    Qed.

    Fact mm_transfert_progress i v st :
           v#>dst = 0
        -> v#>zero = 0
        -> st = (3+i,v[0/src][(v#>src)/dst])
        -> (i,mm_transfert i) // (i,v) -+> st.
    Proof.
      intros H1 H2 ?; subst; apply mm_transfert_spec with (1 := eq_refl) (2 := eq_refl); auto.
      rewrite H1; apply vec_pos_ext; intros p; dest p dst.
    Qed.

  End transfert.

  Hint Rewrite mm_transfert_length : length_db.

  Section div2.

    Variables (src quo rem : pos n)
              (Hsq : src <> quo) (Hsr : src <> rem) (Hqr : quo <> rem)
              (i : nat).

    Definition mm_div2 :=
      DEC src (6+i) ::
      INC rem ::
      DEC src (i+6) ::
      DEC rem (4+i) ::
      INC quo ::
      DEC rem i ::
      nil.

    Fact mm_div2_length : length mm_div2 = 6.
    Proof. reflexivity. Qed.

    Let mm_div2_spec_0 k v w :
         v#>src = 2*k -> v#>rem = 0 -> w = v[0/src][(k+(v#>quo))/quo] -> (i,mm_div2) // (i,v) -+> (6+i,w).
    Proof.
      unfold mm_div2.
      revert v w.
      induction k as [ | k IHk ]; intros v w H1 H4 H3.

      simpl in H1.
      mm sss DEC 0 with src (6+i).
      mm sss stop; f_equal; subst.
      apply vec_pos_ext; intros p.
      dest p quo; dest p src.

      replace (2*S k) with (S (S (2*k))) in H1 by omega.
      mm sss DEC S with src (6+i) (S (2*k)).
      mm sss INC with rem.
      mm sss DEC S with src (i+6) (2*k); rew vec.
      mm sss DEC S with rem (4+i) (v#>rem); rew vec.
      mm sss INC with quo; rew vec.
      mm sss DEC 0 with rem i; rew vec.
      apply sss_progress_compute.
      apply IHk; auto; rew vec.
      subst; apply vec_pos_ext; intros p.
      dest p quo; try omega.
      dest p src; dest p rem.
    Qed.

    Let mm_div2_spec_1 k v w :
         v#>src = 1+2*k -> v#>rem = 0 -> w = v[0/src][(k+(v#>quo))/quo][1/rem] -> (i,mm_div2) // (i,v) -+> (6+i,w).
    Proof.
      unfold mm_div2.
      revert v w.
      induction k as [ | k IHk ]; intros v w H1 H4 H3.

      simpl in H1.
      mm sss DEC S with src (6+i) 0.
      mm sss INC with rem.
      mm sss DEC 0 with src (i+6); rew vec.
      mm sss stop; f_equal; try omega.
      subst; simpl.
      apply vec_pos_ext; intros p.
      dest p rem; dest p quo; dest p src.

      replace (1 + 2*S k) with (S (S (1+2*k))) in H1 by omega.
      mm sss DEC S with src (6+i) (S (1+2*k)).
      mm sss INC with rem.
      mm sss DEC S with src (i+6) (1+2*k); rew vec.
      mm sss DEC S with rem (4+i) (v#>rem); rew vec.
      mm sss INC with quo; rew vec.
      mm sss DEC 0 with rem i; rew vec.
      apply sss_progress_compute.
      apply IHk; auto; rew vec.
      subst; apply vec_pos_ext; intros p.
      dest p quo; try omega.
      dest p src; dest p rem.
    Qed.

    Fact mm_div2_progress v :
           v#>quo = 0
        -> v#>rem = 0
        -> let (k,b) := div2 (v#>src)
           in (i,mm_div2) // (i,v) -+> (6+i,v[0/src][k/quo][(if b then 1 else 0)/rem]).
    Proof.
      intros H2 H3.
      generalize (div2_spec (v#>src)).
      destruct (div2 (v#>src)) as (k,[]); intros H4.

      apply mm_div2_spec_1 with k; auto.
      omega.
      apply vec_pos_ext; intros p.
      dest p rem; dest p quo; omega.

      apply mm_div2_spec_0 with k; auto.
      apply vec_pos_ext; intros p.
      dest p rem; dest p quo; omega.
    Qed.

    Corollary mm_div2_progress_1 v k st :
           v#>quo = 0
        -> v#>rem = 0
        -> div2 (v#>src) = (k,true)
        -> st = (6+i,v[0/src][k/quo][1/rem])
        -> (i,mm_div2) // (i,v) -+> st.
    Proof.
      intros H2 H3 H4 ?; subst.
      generalize (mm_div2_progress _ H2 H3).
      rewrite H4; auto.
    Qed.

    Corollary mm_div2_progress_0 v k st :
           v#>quo = 0
        -> v#>rem = 0
        -> div2 (v#>src) = (k,false)
        -> st = (6+i,v[0/src][k/quo][0/rem])
        -> (i,mm_div2) // (i,v) -+> st.
    Proof.
      intros H2 H3 H4 ?; subst.
      generalize (mm_div2_progress _ H2 H3).
      rewrite H4; auto.
    Qed.

  End div2.

  Hint Rewrite mm_div2_length : length_db.

  Section mul2.

    Variables (src dst zero : pos n)
              (Hsd : src <> dst) (Hsz : src <> zero) (Hdz : dst <> zero)
              (i : nat).

    Let dst' := dst.

    Definition mm_mul2 := DEC src (4+i) :: INC dst :: INC dst' :: DEC zero i :: nil.

    Fact mm_mul2_length : length mm_mul2 = 4.
    Proof. reflexivity. Qed.

    Let mm_mul2_spec k v w :
        v#>src = k -> v#>zero = 0 -> w = v[0/src][(2*k+(v#>dst))/dst] -> (i,mm_mul2) // (i,v) -+> (4+i,w).
    Proof.
      unfold mm_mul2.
      revert v w; induction k as [ | k IHk ]; intros v w H1 H2 H3.

      mm sss DEC 0 with src (4+i).
      mm sss stop; f_equal; subst.
      apply vec_pos_ext; intros p.
      dest p dst; dest p src.

      mm sss DEC S with src (4+i) k.
      mm sss INC with dst.
      mm sss INC with dst'.
      mm sss DEC 0 with zero i; rew vec.
      unfold dst'; rew vec.
      apply sss_progress_compute.
      apply IHk; unfold dst'; rew vec.
      subst; apply vec_pos_ext; intros p.
      dest p dst.
      omega.
      dest p src.
    Qed.

    Fact mm_mul2_progress v st :
         v#>dst = 0
      -> v#>zero = 0
      -> st = (4+i,v[0/src][(2*(v#>src))/dst])
      -> (i,mm_mul2) // (i,v) -+> st.
    Proof.
      intros H1 H2 ?; subst.
      apply mm_mul2_spec with (1 := eq_refl); auto.
      rewrite H1; f_equal; omega.
    Qed.

  End mul2.

  Hint Rewrite mm_mul2_length : length_db.

  Fixpoint stack_enc (s : list bool) : nat :=
    match s with
      | nil => 1
      | One::s => 1+2*stack_enc s
      | Zero::s => 2*stack_enc s
    end.

  Fact stack_enc_S s : { k | stack_enc s = S k }.
  Proof.
    induction s as [ | [] s (k & Hk) ].
    exists 0; auto.
    exists (2*stack_enc s); auto.
    exists (S (2*k)); simpl; omega.
  Qed.

  Section push.

    Variables (src tmp zero : pos n)
              (Hst : src <> tmp) (Hsz : src <> zero) (Htz : tmp <> zero)
              (i : nat).

    Definition mm_push_Zero :=
      mm_transfert src tmp zero i ++ mm_mul2 tmp src zero (3+i).

    Fact mm_push_Zero_length : length mm_push_Zero = 7.
    Proof. reflexivity. Qed.

    Fact mm_push_Zero_progress s v :
         v#>tmp = 0
      -> v#>zero = 0
      -> v#>src = stack_enc s
      -> (i,mm_push_Zero) // (i,v) -+> (7+i,v[(stack_enc (Zero::s))/src]).
    Proof.
      intros H1 H2 H3.
      unfold mm_push_Zero.
      apply sss_progress_trans with (st2 := (3+i,v[0/src][(v#>src)/tmp])).
      apply subcode_sss_progress with (P := (i,mm_transfert src tmp zero i)); auto.
      apply mm_transfert_progress; auto.
      apply subcode_sss_progress with (P := (3+i,mm_mul2 tmp src zero (3 + i))); auto.
      apply mm_mul2_progress; auto; rew vec.
      f_equal.
      apply vec_pos_ext; intros p.
      dest p src.
      rewrite H3; auto.
      dest p tmp.
    Qed.

    Definition mm_push_One := mm_push_Zero ++ INC src :: nil.

    Hint Rewrite mm_push_Zero_length : length_db.

    Fact mm_push_One_length : length mm_push_One = 8.
    Proof. reflexivity. Qed.

    Fact mm_push_One_progress s v :
         v#>tmp = 0
      -> v#>zero = 0
      -> v#>src = stack_enc s
      -> (i,mm_push_One) // (i,v) -+> (8+i,v[(stack_enc (One::s))/src]).
    Proof.
      intros H1 H2 H3.
      unfold mm_push_One.
      apply sss_progress_trans with (7+i,v[(stack_enc (Zero::s))/src]).
      apply subcode_sss_progress with (P := (i,mm_push_Zero)); auto.
      apply mm_push_Zero_progress; auto.
      mm sss INC with src.
      mm sss stop; f_equal; auto.
      apply vec_pos_ext; intros p.
      dest p src.
    Qed.

  End push.

  Hint Rewrite mm_push_Zero_length mm_push_One_length : length_db.

  Section pop.


    Variables (src tmp1 tmp2 zero : pos n)
              (Hs1 : src <> tmp1) (Hs2 : src <> tmp2) (Hsz : src <> zero)
              (H12 : tmp1 <> tmp2) (H1z : tmp1 <> zero) (H2z : tmp2 <> zero)
              (i j k e : nat).

    Let src' := src.

    Definition mm_pop :=
     mm_transfert src tmp1 tmp2 i ++
     mm_div2 tmp1 src tmp2 (3+i) ++
     DEC src (13+i) ::
     INC src ::
     DEC tmp2 j ::
     DEC tmp1 k ::
     DEC tmp2 k ::
     INC src' ::
     DEC tmp2 e ::
                 nil.

    Fact mm_pop_length : length mm_pop = 16.
    Proof. reflexivity. Qed.

    Fact mm_pop_void_progress v :
         v#>tmp1 = 0
      -> v#>tmp2 = 0
      -> v#>src = stack_enc nil
      -> (i,mm_pop) // (i,v) -+> (e,v).
    Proof.
      unfold mm_pop.
      intros H1 H2 H4; simpl in H4.

      apply sss_progress_trans with (3+i,v[0/src][1/tmp1]).
      apply subcode_sss_progress with (P := (i,mm_transfert src tmp1 tmp2 i)); auto.
      apply mm_transfert_progress; auto; f_equal.
      rewrite H4; auto.

      apply sss_progress_trans with (9+i,v[0/tmp1][0/src][1/tmp2]).
      apply subcode_sss_progress with (P := (3+i,mm_div2 tmp1 src tmp2 (3 + i))); auto.
      apply mm_div2_progress_1 with (k := 0); auto; rew vec.
      f_equal.
      apply vec_pos_ext; intros p.
      dest p tmp2; dest p src; dest p tmp1.

      mm sss DEC 0 with src (13+i); rew vec.
      mm sss DEC S with tmp2 k 0; rew vec.
      mm sss INC with src'; unfold src'; rew vec.
      mm sss DEC 0 with tmp2 e; rew vec.
      mm sss stop; f_equal.
      apply vec_pos_ext; intros p.
      dest p tmp2; dest p src; dest p tmp1.
    Qed.

    Fact mm_pop_Zero_progress v s:
         v#>tmp1 = 0
      -> v#>tmp2 = 0
      -> v#>src = stack_enc (Zero::s)
      -> (i,mm_pop) // (i,v) -+> (j,v[(stack_enc s)/src]).
    Proof.
      unfold mm_pop.
      intros H1 H2 H4; unfold stack_enc in H4; fold stack_enc in H4.

      apply sss_progress_trans with (3+i,v[0/src][(2*stack_enc s)/tmp1]).
      apply subcode_sss_progress with (P := (i,mm_transfert src tmp1 tmp2 i)); auto.
      apply mm_transfert_progress; auto; f_equal.
      rewrite H4; auto.

      apply sss_progress_trans with (9+i,v[0/tmp1][(stack_enc s)/src][0/tmp2]).
      apply subcode_sss_progress with (P := (3+i,mm_div2 tmp1 src tmp2 (3 + i))); auto.
      apply mm_div2_progress_0 with (k := stack_enc s); auto; rew vec.
      rewrite div2_2p0; auto.
      f_equal.
      apply vec_pos_ext; intros p.
      dest p tmp2; dest p src; dest p tmp1.

      destruct (stack_enc_S s) as (q & Hq).
      mm sss DEC S with src (13+i) q; rew vec.
      mm sss INC with src; rew vec.
      mm sss DEC 0 with tmp2 j; rew vec.
      mm sss stop; f_equal.
      apply vec_pos_ext; intros p.
      dest p src; dest p tmp2; dest p tmp1.
    Qed.

    Fact mm_pop_One_progress v s:
         v#>tmp1 = 0
      -> v#>tmp2 = 0
      -> v#>src = stack_enc (One::s)
      -> (i,mm_pop) // (i,v) -+> (k,v[(stack_enc s)/src]).
    Proof.
      unfold mm_pop.
      intros H1 H2 H4; unfold stack_enc in H4; fold stack_enc in H4.

      apply sss_progress_trans with (3+i,v[0/src][(2*stack_enc s+1)/tmp1]).
      apply subcode_sss_progress with (P := (i,mm_transfert src tmp1 tmp2 i)); auto.
      apply mm_transfert_progress; auto; f_equal.
      rewrite H4; f_equal; omega.

      apply sss_progress_trans with (9+i,v[0/tmp1][(stack_enc s)/src][1/tmp2]).
      apply subcode_sss_progress with (P := (3+i,mm_div2 tmp1 src tmp2 (3 + i))); auto.
      apply mm_div2_progress_1 with (k := stack_enc s); auto; rew vec.
      rewrite div2_2p1; auto.
      f_equal.
      apply vec_pos_ext; intros p.
      dest p tmp2; dest p src; dest p tmp1.

      destruct (stack_enc_S s) as (q & Hq).
      mm sss DEC S with src (13+i) q; rew vec.
      mm sss INC with src; rew vec.
      mm sss DEC S with tmp2 j 0; rew vec.
      mm sss DEC 0 with tmp1 k; rew vec.
      mm sss stop; f_equal.
      apply vec_pos_ext; intros p.
      dest p src; dest p tmp2; dest p tmp1.
    Qed.

  End pop.

End Minsky_Machine_utils.

Hint Rewrite mm_push_Zero_length mm_push_One_length mm_pop_length : length_db.