From Undecidability.L.Complexity Require Export NP ONotation.
From Undecidability.L.Tactics Require Import LTactics.
From Undecidability.L.Complexity Require Import MorePrelim.
From Undecidability.L Require Export Datatypes.LLists Datatypes.LLNat.
From Undecidability.L.Functions Require Import EqBool.
why the heck isn't this in the standard library? no one knows...
Instance proper_lt_mul : Proper (lt ==> eq ==> le) Nat.mul.
Proof.
intros a b c d e f. nia.
Qed.
Instance proper_lt_add : Proper (lt ==> eq ==> le) Nat.add.
Proof.
intros a b c d e f. nia.
Qed.
Instance proper_le_pow : Proper (le ==> eq ==> le) Nat.pow.
Proof.
intros a b H1 d e ->. apply Nat.pow_le_mono_l, H1.
Qed.
Instance mult_lt_le : Proper (eq ==> lt ==> le) mult.
Proof.
intros a b -> d e H. nia.
Qed.
Instance add_lt_lt : Proper (eq ==> lt ==> lt) Nat.add.
Proof.
intros a b -> c d H. lia.
Qed.
Instance le_lt_impl : Proper (le --> eq ==> Basics.impl) lt.
Proof.
intros a b H d e ->. unfold Basics.flip in H. unfold Basics.impl. lia.
Qed.
Instance lt_le_impl : Proper (lt --> eq ==> Basics.impl) le.
Proof.
intros a b H d e ->. unfold Basics.flip in H. unfold Basics.impl. lia.
Qed.
Lemma list_el_size_bound {X : Type} `{registered X} (l : list X) (a : X) :
a el l -> size(enc a) <= size(enc l).
Proof.
intros H1.
rewrite size_list.
induction l.
- destruct H1.
- cbn. destruct H1. rewrite H0; clear H0. solverec. rewrite IHl. 2: assumption.
solverec.
Qed.
Lemma list_app_size {X : Type} `{registered X} (l l' : list X) :
size(enc (l ++ l')) + c__listsizeNil = size(enc l) + size(enc l').
Proof.
repeat rewrite size_list.
rewrite map_app. rewrite sumn_app. lia.
Qed.
Lemma list_size_at_least {X : Type} `{registered X} (l : list X) : size(enc l) >= c__listsizeNil.
Proof. rewrite size_list. lia. Qed.
Lemma list_app_size_l {X : Type} `{registered X} (l l' : list X) :
size(enc (l ++ l')) >= size (enc l).
Proof.
enough (size(enc (l++l')) + c__listsizeNil >= size(enc l) + c__listsizeNil) by lia.
rewrite list_app_size. specialize list_size_at_least with (l:= l'). lia.
Qed.
Lemma list_app_size_r {X : Type} `{registered X} (l l' : list X) :
size(enc (l ++ l')) >= size (enc l').
Proof.
enough (size(enc (l++l')) + c__listsizeNil >= size(enc l') + c__listsizeNil) by lia.
rewrite list_app_size. specialize list_size_at_least with (l:= l). lia.
Qed.
Lemma list_subsequence_size_bound {X : Type} `{registered X} (l l': list X) :
subsequence l l' -> size (enc l) <= size (enc l').
Proof.
intros (C & D & ->).
enough (size(enc l) <= size(enc (l++D))).
{
rewrite H0. specialize list_app_size_r with (l:= C) (l' := l++D). lia.
}
specialize list_app_size_l with (l:= l) (l':=D). lia.
Qed.
Lemma list_size_cons {X : Type} `{registered X} (l : list X) (a : X) : size(enc (a::l)) = size(enc a) + size(enc l) + c__listsizeCons.
Proof. repeat rewrite size_list. cbn. lia. Qed.
Lemma list_size_app (X : Type) (l1 l2 : list X) `{registered X} : size (enc (l1 ++ l2)) <= size (enc l1) + size (enc l2).
Proof.
rewrite <- list_app_size. lia.
Qed.
Lemma list_size_concat (X : Type) (l : list (list X)) `{registered X} : size (enc (concat l)) <= size (enc l).
Proof.
induction l; cbn; [easy | ].
now rewrite list_size_app, list_size_cons, IHl.
Qed.
Lemma list_size_length {X : Type} `{registered X} (l : list X) : |l| <= size(enc l).
Proof.
rewrite size_list. induction l.
- cbn; lia.
- cbn. rewrite IHl. unfold c__listsizeCons; lia.
Qed.
Lemma list_size_enc_length {X : Type} `{registered X} (l : list X) : size (enc (|l|)) <= size (enc l).
Proof.
rewrite size_list. rewrite size_nat_enc. unfold c__natsizeS, c__natsizeO, c__listsizeNil, c__listsizeCons. induction l; cbn; lia.
Qed.
Lemma list_size_of_el {X : Type} `{registered X} (l : list X) (k : nat) : (forall a, a el l -> size(enc a) <= k) -> size(enc l) <= (k * (|l|)) + c__listsizeCons * (|l|) + c__listsizeNil .
Proof.
intros H1. induction l.
- cbn. rewrite size_list. cbn. lia.
- cbn -[c__listsizeCons]. rewrite list_size_cons. rewrite IHl; [ |now firstorder]. rewrite H1; [ |now left].
solverec.
Qed.
Lemma map_time_mono (X : Type) (f1 f2 : X -> nat) (l : list X): (forall x : X, x el l -> f1 x <= f2 x) -> map_time f1 l <= map_time f2 l.
Proof.
intros H. induction l; cbn; [lia | ].
rewrite IHl, H by easy. lia.
Qed.
Lemma concat_time_exp (X : Type) (l : list (list X)): concat_time l = sumn (map (fun l' => c__concat * length l') l) + (|l| + 1) * c__concat.
Proof.
induction l; cbn -[Nat.add Nat.mul].
- lia.
- unfold concat_time in IHl. rewrite IHl. lia.
Qed.
Lemma sumn_map_mono (X : Type) (f1 f2 : X -> nat) l : (forall x, x el l -> f1 x <= f2 x) -> sumn (map f1 l) <= sumn (map f2 l).
Proof.
intros H. induction l; cbn; [lia | ].
rewrite IHl, H by easy. lia.
Qed.
Lemma sumn_map_const (X : Type) c (l : list X) : sumn (map (fun _ => c) l) = |l| * c.
Proof.
induction l; cbn; [lia | ].
rewrite IHl. lia.
Qed.
Lemma nat_size_lt a b: a < b -> size (enc a) < size (enc b).
Proof.
intros H. rewrite !size_nat_enc. unfold c__natsizeS; nia.
Qed.
Lemma nat_size_le a b: a <= b -> size (enc a) <= size (enc b).
Proof.
intros H. rewrite !size_nat_enc. unfold c__natsizeS; nia.
Qed.
Tactic Notation "replace_le" constr(s) "with" constr(r) "by" tactic(tac) :=
let H := fresh in assert (s <= r) as H by tac; rewrite !H; clear H.
Tactic Notation "replace_le" constr(s) "with" constr(r) "by" tactic(tac) "at" ne_integer_list(occ) :=
let H := fresh in assert (s <= r) as H by tac; rewrite H at occ; clear H.
Tactic Notation "replace_le" constr(s) "with" constr(r) :=
let H := fresh in assert (s <= r) as H; [ | rewrite !H; clear H].
Tactic Notation "poly_mono" constr(H) "at" integer(occ) :=
let He := fresh in specialize H as He; match type of He with
| _ /\ monotonic _ => unfold monotonic in He; setoid_rewrite (proj2 He) at occ
| monotonic _ /\ _ => unfold monotonic in He; setoid_rewrite (proj1 He) at occ
end; clear He.
Tactic Notation "poly_mono" constr(H) :=
let He := fresh in specialize H as He; match type of He with
| _ /\ monotonic _ => unfold monotonic in He; erewrite (proj2 He)
| monotonic _ /\ _ => unfold monotonic in He; erewrite (proj1 He)
end; clear He.
Lemma le_add_l n m : m <= n + m.
Proof. lia. Qed.
Definition c__moduloBound := c__divmod + c__modulo + c__sub.
Lemma modulo_time_bound x y:
modulo_time x y <= (size (enc x) + size (enc y) + 1) * c__moduloBound.
Proof.
unfold modulo_time, divmod_time. rewrite size_nat_enc_r with (n := x) at 1. rewrite size_nat_enc_r with (n := y) at 1.
unfold c__moduloBound. nia.
Qed.
Lemma leb_time_bound_l a b: leb_time a b <= (size(enc a) + 1) * c__leb.
Proof.
unfold leb_time. rewrite Nat.le_min_l. rewrite size_nat_enc_r with (n := a) at 1. lia.
Qed.
Lemma leb_time_bound_r a b : leb_time a b <= (size(enc b) + 1) * c__leb.
Proof.
unfold leb_time. rewrite Nat.le_min_r. rewrite size_nat_enc_r with (n:= b) at 1. lia.
Qed.
Lemma forallb_time_exp (X : Type) (f : X -> nat) l: forallb_time f l = sumn (map (fun x => f x + c__forallb) l) + c__forallb.
Proof.
unfold forallb_time; induction l; cbn; [lia | ].
rewrite IHl. easy.
Qed.
Section fixXEq.
Context {X : Type}.
Context {H : registered X}.
Context (Xeqb : X -> X -> bool).
Context {HXeq : eqbClass Xeqb}.
Context {HeqbComp : eqbCompT X}.
Definition poly__listInDecb n := (n + 1) * (c__listInDecb + 1 + c__eqbComp X).
Lemma list_in_decb_time_bound (l : list X) e: list_in_decb_time l e <= poly__listInDecb (size (enc l)).
Proof.
induction l; cbn.
- unfold poly__listInDecb. nia.
- rewrite IHl. unfold eqbTime.
rewrite Nat.le_min_l. unfold poly__listInDecb.
rewrite list_size_cons. unfold c__listsizeCons; leq_crossout.
Qed.
Lemma list_in_decb_poly : monotonic poly__listInDecb /\ inOPoly poly__listInDecb.
Proof.
unfold poly__listInDecb; split; smpl_inO.
Qed.
Definition poly__listInclDecb n := n * poly__listInDecb n + (n + 1) * c__list_incl_decb.
Lemma list_incl_decb_time_bound (l1 l2 :list X) : list_incl_decb_time l1 l2 <= poly__listInclDecb (size (enc l1) + size (enc l2)).
Proof.
induction l1; cbn.
- unfold poly__listInclDecb. nia.
- rewrite list_in_decb_time_bound. rewrite IHl1.
poly_mono list_in_decb_poly. 2: { instantiate (1 := size (enc (a :: l1)) + size (enc l2)). lia. }
unfold poly__listInclDecb. rewrite list_size_cons at 2 4.
poly_mono list_in_decb_poly at 2. 2 : { instantiate (1 := size (enc (a :: l1)) + size (enc l2)). rewrite list_size_cons. lia. }
unfold c__listsizeCons. nia.
Qed.
Lemma list_incl_decb_poly : monotonic poly__listInclDecb /\ inOPoly poly__listInclDecb.
Proof.
unfold poly__listInclDecb; split; smpl_inO; apply list_in_decb_poly.
Qed.
Definition poly__dupfreeb n := n * poly__listInDecb n + (n + 1) * c__dupfreeb.
Lemma dupfreeb_time_bound (l : list X) : dupfreeb_time l <= poly__dupfreeb (size (enc l)).
Proof.
induction l; cbn.
- unfold poly__dupfreeb; nia.
- rewrite list_in_decb_time_bound. rewrite IHl.
poly_mono list_in_decb_poly. 2: { instantiate (1 := size (enc (a :: l))). rewrite list_size_cons. nia. }
unfold poly__dupfreeb.
poly_mono list_in_decb_poly at 2. 2: { instantiate (1 := size (enc (a :: l))). rewrite list_size_cons. nia. }
rewrite list_size_cons at 3 5. unfold c__listsizeCons. nia.
Qed.
Lemma dupfreeb_poly : monotonic poly__dupfreeb /\ inOPoly poly__dupfreeb.
Proof.
unfold poly__dupfreeb; split; smpl_inO; apply list_in_decb_poly.
Qed.
End fixXEq.
Section fixX.
Context {X : Type}.
Context {H : registered X}.
Variable (Y : Type).
Context {RY : registered Y}.
Lemma forallb_time_bound_env (predT : Y -> X -> nat) (f : nat -> nat):
(forall (a : X) (y : Y), predT y a <= f (size(enc a) + size(enc y))) /\ monotonic f
-> forall (l : list X) (y : Y), forallb_time (predT y) l <= (|l| +1) * (f(size (enc l) + size(enc y)) + c__forallb).
Proof.
intros [H1 H2]. intros. induction l.
- cbn. lia.
- cbn. rewrite IHl, H1. unfold monotonic in H2.
rewrite H2 with (x' := size (enc (a :: l)) + size(enc y)). 2: rewrite list_size_cons; nia.
setoid_rewrite H2 with (x' := size(enc (a::l)) + size(enc y)) at 2. 2: rewrite list_size_cons; nia.
nia.
Qed.
Lemma nth_error_time_bound :
forall (l : list X) n, nth_error_time l n <= (min (size (enc l)) (size (enc n)) + 1) * c__ntherror.
Proof.
intros. unfold nth_error_time. rewrite size_nat_enc_r with (n := n) at 1. rewrite list_size_length. nia.
Qed.
Lemma map_time_bound_env (fT : Y -> X -> nat) (f__bound : nat -> nat):
(forall (env : Y) (ele : X), fT env ele <= f__bound (size (enc env) + size (enc ele))) /\ monotonic f__bound
-> forall (env : Y) (l : list X), map_time (fT env) l <= (|l| + 1) * (f__bound (size (enc env) + size (enc l)) + 1) * (c__map + 1).
Proof.
intros [H1 H2] env l. induction l; cbn -[c__map].
- nia.
- rewrite IHl. rewrite H1. unfold monotonic in H2.
rewrite H2 at 1. 2: (replace_le (size (enc a)) with (size (enc (a::l))) by (rewrite list_size_cons; lia)); reflexivity.
setoid_rewrite H2 at 2. 2: (replace_le (size (enc l)) with (size (enc (a::l))) by (rewrite list_size_cons; lia)); reflexivity.
nia.
Qed.
Definition poly__concat n := (n + 1) * c__concat.
Lemma concat_time_bound (l : list (list X)) : concat_time l <= poly__concat (size (enc l)).
Proof.
unfold concat_time. induction l; cbn -[Nat.add Nat.mul].
- unfold poly__concat. nia.
- rewrite IHl. unfold poly__concat. rewrite list_size_cons. rewrite list_size_length. unfold c__concat, c__listsizeCons; nia.
Qed.
Lemma concat_poly : monotonic poly__concat /\ inOPoly poly__concat.
Proof.
split; unfold poly__concat; smpl_inO.
Qed.
End fixX.
Section fixXY.
Context {X Y Z: Type}.
Context {H:registered X}.
Context {H0: registered Y}.
Context {H1 : registered Z}.
Lemma fold_right_time_bound_env (step : Z -> Y -> X -> X) (stepT : Z -> Y -> X -> nat) (f__arg f__size : nat -> nat):
(forall (acc : X) (ele : Y) (env : Z), stepT env ele acc <= f__arg (size (enc acc) + size (enc ele) + size (enc env))) /\ monotonic f__arg
-> (forall (acc : X) (ele : Y) (env : Z), size (enc (step env ele acc)) <= size (enc acc) + f__size (size (enc ele) + size (enc env))) /\ monotonic f__size
-> forall (l : list Y) (acc : X) (env : Z), fold_right_time (step env) (stepT env) l acc <= (|l| + 1) * f__arg (|l| * f__size (size(enc l) + size (enc env)) + size (enc acc) + size(enc l) + size (enc env)) + (|l| + 1) * c__fold_right.
Proof.
intros [G1 G2] [F1 F2] l init env.
assert (forall l' l'', l = l' ++ l'' -> size (enc (fold_right (step env) init l'')) <= |l''| * f__size(size (enc l'') + size (enc env)) + size (enc init)) as H3.
{
intros l' l''. revert l'. induction l''; intros.
- cbn. lia.
- cbn. rewrite F1. rewrite IHl''. 2: { now rewrite app_comm_cons' in H2. }
unfold monotonic in F2. setoid_rewrite F2 at 2.
2: (replace_le (size(enc a)) with (size (enc (a::l''))) by (apply list_el_size_bound; eauto)); reflexivity.
rewrite F2 at 1. 2: (replace_le (size (enc l'')) with (size (enc (a::l''))) by (rewrite list_size_cons; lia)); reflexivity.
nia.
}
induction l.
- cbn -[c__fold_right]. lia.
- cbn -[c__fold_right]. rewrite IHl. clear IHl.
2: { intros. specialize (H3 (a::l') l''). apply H3. rewrite H2. eauto. }
rewrite G1.
unfold monotonic in *. erewrite G2.
2: { rewrite H3. 2: assert (a::l = [a] ++l) as -> by eauto; easy.
erewrite F2. 2: (replace_le (size (enc l)) with (size (enc (a::l))) by (rewrite list_size_cons; lia)); reflexivity.
replace_le (size (enc a)) with (size (enc (a::l))) by (rewrite list_size_cons; lia).
instantiate (1 := (f__size (size (enc (a :: l)) + size (enc env)) + (| l |) * f__size (size (enc (a :: l)) + size (enc env)) + size (enc init) + size (enc (a :: l)) + size (enc env))).
nia.
}
setoid_rewrite G2 at 2.
2: {
instantiate (1 := (f__size (size (enc (a :: l)) + size (enc env)) + (| l |) * f__size (size (enc (a :: l)) + size (enc env)) + size (enc init) + size (enc (a :: l)) + size (enc env))).
rewrite F2. 2: (replace_le (size(enc l)) with (size (enc (a::l))) by (rewrite list_size_cons; lia)); reflexivity.
replace_le (size (enc l)) with (size (enc (a::l))) by (rewrite list_size_cons; lia). lia.
}
nia.
Qed.
End fixXY.
Proof.
intros a b c d e f. nia.
Qed.
Instance proper_lt_add : Proper (lt ==> eq ==> le) Nat.add.
Proof.
intros a b c d e f. nia.
Qed.
Instance proper_le_pow : Proper (le ==> eq ==> le) Nat.pow.
Proof.
intros a b H1 d e ->. apply Nat.pow_le_mono_l, H1.
Qed.
Instance mult_lt_le : Proper (eq ==> lt ==> le) mult.
Proof.
intros a b -> d e H. nia.
Qed.
Instance add_lt_lt : Proper (eq ==> lt ==> lt) Nat.add.
Proof.
intros a b -> c d H. lia.
Qed.
Instance le_lt_impl : Proper (le --> eq ==> Basics.impl) lt.
Proof.
intros a b H d e ->. unfold Basics.flip in H. unfold Basics.impl. lia.
Qed.
Instance lt_le_impl : Proper (lt --> eq ==> Basics.impl) le.
Proof.
intros a b H d e ->. unfold Basics.flip in H. unfold Basics.impl. lia.
Qed.
Lemma list_el_size_bound {X : Type} `{registered X} (l : list X) (a : X) :
a el l -> size(enc a) <= size(enc l).
Proof.
intros H1.
rewrite size_list.
induction l.
- destruct H1.
- cbn. destruct H1. rewrite H0; clear H0. solverec. rewrite IHl. 2: assumption.
solverec.
Qed.
Lemma list_app_size {X : Type} `{registered X} (l l' : list X) :
size(enc (l ++ l')) + c__listsizeNil = size(enc l) + size(enc l').
Proof.
repeat rewrite size_list.
rewrite map_app. rewrite sumn_app. lia.
Qed.
Lemma list_size_at_least {X : Type} `{registered X} (l : list X) : size(enc l) >= c__listsizeNil.
Proof. rewrite size_list. lia. Qed.
Lemma list_app_size_l {X : Type} `{registered X} (l l' : list X) :
size(enc (l ++ l')) >= size (enc l).
Proof.
enough (size(enc (l++l')) + c__listsizeNil >= size(enc l) + c__listsizeNil) by lia.
rewrite list_app_size. specialize list_size_at_least with (l:= l'). lia.
Qed.
Lemma list_app_size_r {X : Type} `{registered X} (l l' : list X) :
size(enc (l ++ l')) >= size (enc l').
Proof.
enough (size(enc (l++l')) + c__listsizeNil >= size(enc l') + c__listsizeNil) by lia.
rewrite list_app_size. specialize list_size_at_least with (l:= l). lia.
Qed.
Lemma list_subsequence_size_bound {X : Type} `{registered X} (l l': list X) :
subsequence l l' -> size (enc l) <= size (enc l').
Proof.
intros (C & D & ->).
enough (size(enc l) <= size(enc (l++D))).
{
rewrite H0. specialize list_app_size_r with (l:= C) (l' := l++D). lia.
}
specialize list_app_size_l with (l:= l) (l':=D). lia.
Qed.
Lemma list_size_cons {X : Type} `{registered X} (l : list X) (a : X) : size(enc (a::l)) = size(enc a) + size(enc l) + c__listsizeCons.
Proof. repeat rewrite size_list. cbn. lia. Qed.
Lemma list_size_app (X : Type) (l1 l2 : list X) `{registered X} : size (enc (l1 ++ l2)) <= size (enc l1) + size (enc l2).
Proof.
rewrite <- list_app_size. lia.
Qed.
Lemma list_size_concat (X : Type) (l : list (list X)) `{registered X} : size (enc (concat l)) <= size (enc l).
Proof.
induction l; cbn; [easy | ].
now rewrite list_size_app, list_size_cons, IHl.
Qed.
Lemma list_size_length {X : Type} `{registered X} (l : list X) : |l| <= size(enc l).
Proof.
rewrite size_list. induction l.
- cbn; lia.
- cbn. rewrite IHl. unfold c__listsizeCons; lia.
Qed.
Lemma list_size_enc_length {X : Type} `{registered X} (l : list X) : size (enc (|l|)) <= size (enc l).
Proof.
rewrite size_list. rewrite size_nat_enc. unfold c__natsizeS, c__natsizeO, c__listsizeNil, c__listsizeCons. induction l; cbn; lia.
Qed.
Lemma list_size_of_el {X : Type} `{registered X} (l : list X) (k : nat) : (forall a, a el l -> size(enc a) <= k) -> size(enc l) <= (k * (|l|)) + c__listsizeCons * (|l|) + c__listsizeNil .
Proof.
intros H1. induction l.
- cbn. rewrite size_list. cbn. lia.
- cbn -[c__listsizeCons]. rewrite list_size_cons. rewrite IHl; [ |now firstorder]. rewrite H1; [ |now left].
solverec.
Qed.
Lemma map_time_mono (X : Type) (f1 f2 : X -> nat) (l : list X): (forall x : X, x el l -> f1 x <= f2 x) -> map_time f1 l <= map_time f2 l.
Proof.
intros H. induction l; cbn; [lia | ].
rewrite IHl, H by easy. lia.
Qed.
Lemma concat_time_exp (X : Type) (l : list (list X)): concat_time l = sumn (map (fun l' => c__concat * length l') l) + (|l| + 1) * c__concat.
Proof.
induction l; cbn -[Nat.add Nat.mul].
- lia.
- unfold concat_time in IHl. rewrite IHl. lia.
Qed.
Lemma sumn_map_mono (X : Type) (f1 f2 : X -> nat) l : (forall x, x el l -> f1 x <= f2 x) -> sumn (map f1 l) <= sumn (map f2 l).
Proof.
intros H. induction l; cbn; [lia | ].
rewrite IHl, H by easy. lia.
Qed.
Lemma sumn_map_const (X : Type) c (l : list X) : sumn (map (fun _ => c) l) = |l| * c.
Proof.
induction l; cbn; [lia | ].
rewrite IHl. lia.
Qed.
Lemma nat_size_lt a b: a < b -> size (enc a) < size (enc b).
Proof.
intros H. rewrite !size_nat_enc. unfold c__natsizeS; nia.
Qed.
Lemma nat_size_le a b: a <= b -> size (enc a) <= size (enc b).
Proof.
intros H. rewrite !size_nat_enc. unfold c__natsizeS; nia.
Qed.
Tactic Notation "replace_le" constr(s) "with" constr(r) "by" tactic(tac) :=
let H := fresh in assert (s <= r) as H by tac; rewrite !H; clear H.
Tactic Notation "replace_le" constr(s) "with" constr(r) "by" tactic(tac) "at" ne_integer_list(occ) :=
let H := fresh in assert (s <= r) as H by tac; rewrite H at occ; clear H.
Tactic Notation "replace_le" constr(s) "with" constr(r) :=
let H := fresh in assert (s <= r) as H; [ | rewrite !H; clear H].
Tactic Notation "poly_mono" constr(H) "at" integer(occ) :=
let He := fresh in specialize H as He; match type of He with
| _ /\ monotonic _ => unfold monotonic in He; setoid_rewrite (proj2 He) at occ
| monotonic _ /\ _ => unfold monotonic in He; setoid_rewrite (proj1 He) at occ
end; clear He.
Tactic Notation "poly_mono" constr(H) :=
let He := fresh in specialize H as He; match type of He with
| _ /\ monotonic _ => unfold monotonic in He; erewrite (proj2 He)
| monotonic _ /\ _ => unfold monotonic in He; erewrite (proj1 He)
end; clear He.
Lemma le_add_l n m : m <= n + m.
Proof. lia. Qed.
Definition c__moduloBound := c__divmod + c__modulo + c__sub.
Lemma modulo_time_bound x y:
modulo_time x y <= (size (enc x) + size (enc y) + 1) * c__moduloBound.
Proof.
unfold modulo_time, divmod_time. rewrite size_nat_enc_r with (n := x) at 1. rewrite size_nat_enc_r with (n := y) at 1.
unfold c__moduloBound. nia.
Qed.
Lemma leb_time_bound_l a b: leb_time a b <= (size(enc a) + 1) * c__leb.
Proof.
unfold leb_time. rewrite Nat.le_min_l. rewrite size_nat_enc_r with (n := a) at 1. lia.
Qed.
Lemma leb_time_bound_r a b : leb_time a b <= (size(enc b) + 1) * c__leb.
Proof.
unfold leb_time. rewrite Nat.le_min_r. rewrite size_nat_enc_r with (n:= b) at 1. lia.
Qed.
Lemma forallb_time_exp (X : Type) (f : X -> nat) l: forallb_time f l = sumn (map (fun x => f x + c__forallb) l) + c__forallb.
Proof.
unfold forallb_time; induction l; cbn; [lia | ].
rewrite IHl. easy.
Qed.
Section fixXEq.
Context {X : Type}.
Context {H : registered X}.
Context (Xeqb : X -> X -> bool).
Context {HXeq : eqbClass Xeqb}.
Context {HeqbComp : eqbCompT X}.
Definition poly__listInDecb n := (n + 1) * (c__listInDecb + 1 + c__eqbComp X).
Lemma list_in_decb_time_bound (l : list X) e: list_in_decb_time l e <= poly__listInDecb (size (enc l)).
Proof.
induction l; cbn.
- unfold poly__listInDecb. nia.
- rewrite IHl. unfold eqbTime.
rewrite Nat.le_min_l. unfold poly__listInDecb.
rewrite list_size_cons. unfold c__listsizeCons; leq_crossout.
Qed.
Lemma list_in_decb_poly : monotonic poly__listInDecb /\ inOPoly poly__listInDecb.
Proof.
unfold poly__listInDecb; split; smpl_inO.
Qed.
Definition poly__listInclDecb n := n * poly__listInDecb n + (n + 1) * c__list_incl_decb.
Lemma list_incl_decb_time_bound (l1 l2 :list X) : list_incl_decb_time l1 l2 <= poly__listInclDecb (size (enc l1) + size (enc l2)).
Proof.
induction l1; cbn.
- unfold poly__listInclDecb. nia.
- rewrite list_in_decb_time_bound. rewrite IHl1.
poly_mono list_in_decb_poly. 2: { instantiate (1 := size (enc (a :: l1)) + size (enc l2)). lia. }
unfold poly__listInclDecb. rewrite list_size_cons at 2 4.
poly_mono list_in_decb_poly at 2. 2 : { instantiate (1 := size (enc (a :: l1)) + size (enc l2)). rewrite list_size_cons. lia. }
unfold c__listsizeCons. nia.
Qed.
Lemma list_incl_decb_poly : monotonic poly__listInclDecb /\ inOPoly poly__listInclDecb.
Proof.
unfold poly__listInclDecb; split; smpl_inO; apply list_in_decb_poly.
Qed.
Definition poly__dupfreeb n := n * poly__listInDecb n + (n + 1) * c__dupfreeb.
Lemma dupfreeb_time_bound (l : list X) : dupfreeb_time l <= poly__dupfreeb (size (enc l)).
Proof.
induction l; cbn.
- unfold poly__dupfreeb; nia.
- rewrite list_in_decb_time_bound. rewrite IHl.
poly_mono list_in_decb_poly. 2: { instantiate (1 := size (enc (a :: l))). rewrite list_size_cons. nia. }
unfold poly__dupfreeb.
poly_mono list_in_decb_poly at 2. 2: { instantiate (1 := size (enc (a :: l))). rewrite list_size_cons. nia. }
rewrite list_size_cons at 3 5. unfold c__listsizeCons. nia.
Qed.
Lemma dupfreeb_poly : monotonic poly__dupfreeb /\ inOPoly poly__dupfreeb.
Proof.
unfold poly__dupfreeb; split; smpl_inO; apply list_in_decb_poly.
Qed.
End fixXEq.
Section fixX.
Context {X : Type}.
Context {H : registered X}.
Variable (Y : Type).
Context {RY : registered Y}.
Lemma forallb_time_bound_env (predT : Y -> X -> nat) (f : nat -> nat):
(forall (a : X) (y : Y), predT y a <= f (size(enc a) + size(enc y))) /\ monotonic f
-> forall (l : list X) (y : Y), forallb_time (predT y) l <= (|l| +1) * (f(size (enc l) + size(enc y)) + c__forallb).
Proof.
intros [H1 H2]. intros. induction l.
- cbn. lia.
- cbn. rewrite IHl, H1. unfold monotonic in H2.
rewrite H2 with (x' := size (enc (a :: l)) + size(enc y)). 2: rewrite list_size_cons; nia.
setoid_rewrite H2 with (x' := size(enc (a::l)) + size(enc y)) at 2. 2: rewrite list_size_cons; nia.
nia.
Qed.
Lemma nth_error_time_bound :
forall (l : list X) n, nth_error_time l n <= (min (size (enc l)) (size (enc n)) + 1) * c__ntherror.
Proof.
intros. unfold nth_error_time. rewrite size_nat_enc_r with (n := n) at 1. rewrite list_size_length. nia.
Qed.
Lemma map_time_bound_env (fT : Y -> X -> nat) (f__bound : nat -> nat):
(forall (env : Y) (ele : X), fT env ele <= f__bound (size (enc env) + size (enc ele))) /\ monotonic f__bound
-> forall (env : Y) (l : list X), map_time (fT env) l <= (|l| + 1) * (f__bound (size (enc env) + size (enc l)) + 1) * (c__map + 1).
Proof.
intros [H1 H2] env l. induction l; cbn -[c__map].
- nia.
- rewrite IHl. rewrite H1. unfold monotonic in H2.
rewrite H2 at 1. 2: (replace_le (size (enc a)) with (size (enc (a::l))) by (rewrite list_size_cons; lia)); reflexivity.
setoid_rewrite H2 at 2. 2: (replace_le (size (enc l)) with (size (enc (a::l))) by (rewrite list_size_cons; lia)); reflexivity.
nia.
Qed.
Definition poly__concat n := (n + 1) * c__concat.
Lemma concat_time_bound (l : list (list X)) : concat_time l <= poly__concat (size (enc l)).
Proof.
unfold concat_time. induction l; cbn -[Nat.add Nat.mul].
- unfold poly__concat. nia.
- rewrite IHl. unfold poly__concat. rewrite list_size_cons. rewrite list_size_length. unfold c__concat, c__listsizeCons; nia.
Qed.
Lemma concat_poly : monotonic poly__concat /\ inOPoly poly__concat.
Proof.
split; unfold poly__concat; smpl_inO.
Qed.
End fixX.
Section fixXY.
Context {X Y Z: Type}.
Context {H:registered X}.
Context {H0: registered Y}.
Context {H1 : registered Z}.
Lemma fold_right_time_bound_env (step : Z -> Y -> X -> X) (stepT : Z -> Y -> X -> nat) (f__arg f__size : nat -> nat):
(forall (acc : X) (ele : Y) (env : Z), stepT env ele acc <= f__arg (size (enc acc) + size (enc ele) + size (enc env))) /\ monotonic f__arg
-> (forall (acc : X) (ele : Y) (env : Z), size (enc (step env ele acc)) <= size (enc acc) + f__size (size (enc ele) + size (enc env))) /\ monotonic f__size
-> forall (l : list Y) (acc : X) (env : Z), fold_right_time (step env) (stepT env) l acc <= (|l| + 1) * f__arg (|l| * f__size (size(enc l) + size (enc env)) + size (enc acc) + size(enc l) + size (enc env)) + (|l| + 1) * c__fold_right.
Proof.
intros [G1 G2] [F1 F2] l init env.
assert (forall l' l'', l = l' ++ l'' -> size (enc (fold_right (step env) init l'')) <= |l''| * f__size(size (enc l'') + size (enc env)) + size (enc init)) as H3.
{
intros l' l''. revert l'. induction l''; intros.
- cbn. lia.
- cbn. rewrite F1. rewrite IHl''. 2: { now rewrite app_comm_cons' in H2. }
unfold monotonic in F2. setoid_rewrite F2 at 2.
2: (replace_le (size(enc a)) with (size (enc (a::l''))) by (apply list_el_size_bound; eauto)); reflexivity.
rewrite F2 at 1. 2: (replace_le (size (enc l'')) with (size (enc (a::l''))) by (rewrite list_size_cons; lia)); reflexivity.
nia.
}
induction l.
- cbn -[c__fold_right]. lia.
- cbn -[c__fold_right]. rewrite IHl. clear IHl.
2: { intros. specialize (H3 (a::l') l''). apply H3. rewrite H2. eauto. }
rewrite G1.
unfold monotonic in *. erewrite G2.
2: { rewrite H3. 2: assert (a::l = [a] ++l) as -> by eauto; easy.
erewrite F2. 2: (replace_le (size (enc l)) with (size (enc (a::l))) by (rewrite list_size_cons; lia)); reflexivity.
replace_le (size (enc a)) with (size (enc (a::l))) by (rewrite list_size_cons; lia).
instantiate (1 := (f__size (size (enc (a :: l)) + size (enc env)) + (| l |) * f__size (size (enc (a :: l)) + size (enc env)) + size (enc init) + size (enc (a :: l)) + size (enc env))).
nia.
}
setoid_rewrite G2 at 2.
2: {
instantiate (1 := (f__size (size (enc (a :: l)) + size (enc env)) + (| l |) * f__size (size (enc (a :: l)) + size (enc env)) + size (enc init) + size (enc (a :: l)) + size (enc env))).
rewrite F2. 2: (replace_le (size(enc l)) with (size (enc (a::l))) by (rewrite list_size_cons; lia)); reflexivity.
replace_le (size (enc l)) with (size (enc (a::l))) by (rewrite list_size_cons; lia). lia.
}
nia.
Qed.
End fixXY.
Facts we need to prove that a small assignment has an encoding size which is polynomial in the CNF's encoding size
Lemma list_dupfree_incl_length (X : eqType) (a b : list X) : a <<= b -> dupfree a -> |a| <= |b|.
Proof.
intros H1 H2. eapply NoDup_incl_length.
- apply dupfree_Nodup, H2.
- apply H1.
Qed.
Lemma rem_app_eq (X : eqType) (l1 l2 : list X) (x : X) : rem (l1 ++ l2) x = rem l1 x ++ rem l2 x.
Proof.
induction l1; cbn; [easy | ].
destruct Dec; cbn.
- fold (rem (l1 ++ l2) x). rewrite IHl1. easy.
- fold (rem (l1 ++ l2) x). now rewrite IHl1.
Qed.
Lemma list_rem_size_le (X : eqType) `{H : registered X} (l : list X) x : size (enc (rem l x)) <= size (enc l).
Proof.
induction l.
- cbn. lia.
- cbn. destruct Dec; cbn; rewrite !list_size_cons, IHl; lia.
Qed.
Lemma list_incl_dupfree_size (X : eqType) `{registered X} (a b : list X) : a <<= b -> dupfree a -> size (enc a) <= size (enc b).
Proof.
intros H1 H2. revert b H1.
induction H2 as [ | a0 a H1 H2 IH]; intros.
- cbn. rewrite !size_list. cbn. lia.
- specialize (IH (rem b a0)).
rewrite list_size_cons.
cbn. rewrite IH.
2: {
assert (rem (a0 :: a) a0 = a).
{ cbn. destruct Dec; [congruence | ]. cbn.
fold (rem a a0). now rewrite rem_id.
}
rewrite <- H3. now apply rem_mono.
}
specialize (H0 a0 (or_introl eq_refl)). apply In_explicit in H0 as (b1 & b2 & ->).
rewrite !size_list, !rem_app_eq, !map_app, !sumn_app. cbn.
destruct Dec; cbn; [congruence | ].
pose (elem_size := fun (x : X) => size (enc x) + c__listsizeCons).
fold elem_size.
enough (sumn (map elem_size (rem b1 a0)) <= sumn (map elem_size b1) /\ sumn (map elem_size (rem b2 a0)) <= sumn (map elem_size b2)) as H0.
{ destruct H0 as [-> ->]. nia. }
specialize (list_rem_size_le b1 a0) as F1.
specialize (list_rem_size_le b2 a0) as F2.
rewrite !size_list in F1. rewrite !size_list in F2.
fold elem_size in F1. fold elem_size in F2.
split; nia.
Qed.
Section prodLists_bound.
Variable (X Y : Type).
Context `{Xint : registered X} `{Yint : registered Y}.
Definition poly__prodLists n := n * (n + 1) * c__prodLists2 + c__prodLists1.
Lemma prodLists_time_bound (l1 : list X) (l2 : list Y) : prodLists_time l1 l2 <= poly__prodLists (size (enc l1) + size (enc l2)).
Proof.
unfold prodLists_time. rewrite !list_size_length.
unfold poly__prodLists. solverec.
Qed.
Lemma prodLists_poly : monotonic poly__prodLists /\ inOPoly poly__prodLists.
Proof.
unfold poly__prodLists; split; smpl_inO.
Qed.
End prodLists_bound.
Proof.
intros H1 H2. eapply NoDup_incl_length.
- apply dupfree_Nodup, H2.
- apply H1.
Qed.
Lemma rem_app_eq (X : eqType) (l1 l2 : list X) (x : X) : rem (l1 ++ l2) x = rem l1 x ++ rem l2 x.
Proof.
induction l1; cbn; [easy | ].
destruct Dec; cbn.
- fold (rem (l1 ++ l2) x). rewrite IHl1. easy.
- fold (rem (l1 ++ l2) x). now rewrite IHl1.
Qed.
Lemma list_rem_size_le (X : eqType) `{H : registered X} (l : list X) x : size (enc (rem l x)) <= size (enc l).
Proof.
induction l.
- cbn. lia.
- cbn. destruct Dec; cbn; rewrite !list_size_cons, IHl; lia.
Qed.
Lemma list_incl_dupfree_size (X : eqType) `{registered X} (a b : list X) : a <<= b -> dupfree a -> size (enc a) <= size (enc b).
Proof.
intros H1 H2. revert b H1.
induction H2 as [ | a0 a H1 H2 IH]; intros.
- cbn. rewrite !size_list. cbn. lia.
- specialize (IH (rem b a0)).
rewrite list_size_cons.
cbn. rewrite IH.
2: {
assert (rem (a0 :: a) a0 = a).
{ cbn. destruct Dec; [congruence | ]. cbn.
fold (rem a a0). now rewrite rem_id.
}
rewrite <- H3. now apply rem_mono.
}
specialize (H0 a0 (or_introl eq_refl)). apply In_explicit in H0 as (b1 & b2 & ->).
rewrite !size_list, !rem_app_eq, !map_app, !sumn_app. cbn.
destruct Dec; cbn; [congruence | ].
pose (elem_size := fun (x : X) => size (enc x) + c__listsizeCons).
fold elem_size.
enough (sumn (map elem_size (rem b1 a0)) <= sumn (map elem_size b1) /\ sumn (map elem_size (rem b2 a0)) <= sumn (map elem_size b2)) as H0.
{ destruct H0 as [-> ->]. nia. }
specialize (list_rem_size_le b1 a0) as F1.
specialize (list_rem_size_le b2 a0) as F2.
rewrite !size_list in F1. rewrite !size_list in F2.
fold elem_size in F1. fold elem_size in F2.
split; nia.
Qed.
Section prodLists_bound.
Variable (X Y : Type).
Context `{Xint : registered X} `{Yint : registered Y}.
Definition poly__prodLists n := n * (n + 1) * c__prodLists2 + c__prodLists1.
Lemma prodLists_time_bound (l1 : list X) (l2 : list Y) : prodLists_time l1 l2 <= poly__prodLists (size (enc l1) + size (enc l2)).
Proof.
unfold prodLists_time. rewrite !list_size_length.
unfold poly__prodLists. solverec.
Qed.
Lemma prodLists_poly : monotonic poly__prodLists /\ inOPoly poly__prodLists.
Proof.
unfold poly__prodLists; split; smpl_inO.
Qed.
End prodLists_bound.