From Undecidability.L.Tactics Require Import LTactics GenEncode.
From Undecidability.L.Datatypes Require Import LBool LOptions LProd LLNat.
Require Export List PslBase.Lists.Filter Datatypes.
Require Undecidability.L.Datatypes.Lists.
From Undecidability.L Require Import Functions.EqBool.
From Undecidability.L.Datatypes Require Import LBool LOptions LProd LLNat.
Require Export List PslBase.Lists.Filter Datatypes.
Require Undecidability.L.Datatypes.Lists.
From Undecidability.L Require Import Functions.EqBool.
Section Fix_X.
Variable (X:Type).
Context {intX : registered X}.
Global Instance termT_cons : computableTime' (@cons X) (fun a aT => (1,fun A AT => (1,tt))).
Proof using intX.
extract constructor.
solverec.
Qed.
Lemma list_enc_correct (A:list X) (s t:term): proc s -> proc t -> enc A s t >(2) match A with nil => s | cons a A' => t (enc a) (enc (A')) end.
Proof.
extract match.
Qed.
Definition c__app := 16.
Global Instance termT_append : computableTime' (@List.app X) (fun A _ => (5,fun B _ => (length A * c__app + c__app,tt))).
Proof using intX.
extract.
solverec. all: now unfold c__app.
Qed.
Global Instance term_filter: computableTime' (@filter X) (fun p pT => (1,fun l _ => (fold_right (fun x res => 16 + res + fst (pT x tt)) 8 l ,tt))).
Proof using intX.
change (filter (A:=X)) with ((fun (f : X -> bool) =>
fix filter (l : list X) : list X := match l with
| [] => []
| x :: l0 => (fun r => if f x then x :: r else r) (filter l0)
end)).
extract.
solverec.
Defined.
Global Instance term_filter_notime: computable (@filter X).
Proof using intX.
pose (t:= extT (@filter X)). hnf in t.
computable using t.
Defined.
Global Instance term_nth : computableTime' (@nth X) (fun n _ => (5,fun l lT => (1,fun d _ => (n*20+9,tt)))).
Proof using intX.
extract.
solverec.
Qed.
Fixpoint inb eqb (x:X) (A: list X) :=
match A with
nil => false
| a::A' => orb (eqb a x) (inb eqb x A')
end.
Variable X_eqb : X -> X -> bool.
Hypothesis X_eqb_spec : (forall (x y:X), Bool.reflect (x=y) (X_eqb x y)).
Lemma inb_spec: forall x A, Bool.reflect (In x A) (inb X_eqb x A).
Proof using X_eqb_spec.
intros x A. induction A.
-constructor. tauto.
-simpl. destruct (X_eqb_spec a x).
+constructor. tauto.
+inv IHA. destruct (X_eqb_spec a x).
*constructor. tauto.
*constructor. tauto.
*constructor. tauto.
Qed.
Global Instance term_inb: computableTime' inb (fun eq eqT => (5,fun x _ => (1,fun l _ =>
(fold_right (fun x' res => callTime2 eqT x' x
+ res + 17) 4 l ,tt)))).
Proof.
extract.
solverec.
Defined.
Global Instance term_inb_notime: computable inb.
Proof.
extract.
Defined.
Definition pos_nondec :=
fix pos_nondec (eqb: X -> X -> bool) (s : X) (A : list X) {struct A} : option nat :=
match A with
| [] => None
| a :: A0 =>
if eqb s a
then Some 0
else match pos_nondec eqb s A0 with
| Some n => Some (S n)
| None => None
end
end.
Lemma pos_nondec_spec (x:X) `{eq_dec X} A: pos_nondec X_eqb x A = pos x A.
Proof using X_eqb_spec.
induction A;[reflexivity|];cbn.
rewrite IHA. destruct (X_eqb_spec x a); repeat (destruct _; try congruence).
Defined.
Global Instance term_pos_nondec:
computable pos_nondec.
Proof.
extract.
Defined.
End Fix_X.
Hint Resolve Lists.list_enc_correct : Lrewrite.
Definition c__map := 12.
Fixpoint map_time {X} (fT:X -> nat) xs :=
match xs with
[] => c__map
| x :: xs => fT x + map_time fT xs + c__map
end.
Instance term_map (X Y:Type) (Hx : registered X) (Hy:registered Y): computableTime' (@map X Y) (fun _ fT => (1,fun l _ => (map_time (fun x => fst (fT x tt)) l,tt))).
Proof.
extract.
unfold map_time, c__map.
solverec.
Defined.
Lemma map_time_const {X} c (xs:list X):
map_time (fun _ => c) xs = length xs * (c + c__map) + c__map.
Proof.
induction xs;cbn. all:lia.
Qed.
Instance term_map_noTime (X Y:Type) (Hx : registered X) (Hy:registered Y): computable (@map X Y).
Proof.
extract.
Defined.
Definition c__ntherror := 15.
Definition nth_error_time (X : Type) (A : list X) (n : nat) := (min (length A) n + 1) * c__ntherror.
Instance termT_nth_error (X:Type) (Hx : registered X): computableTime' (@nth_error X) (fun l _ => (5, fun n _ => (nth_error_time l n, tt))).
Proof.
extract. solverec. all: unfold nth_error_time, c__ntherror; solverec.
Qed.
Definition c__length := 11.
Instance termT_length X `{registered X} : computableTime' (@length X) (fun A _ => (c__length * (1 + |A|),tt)).
extract. solverec. all: unfold c__length; solverec.
Qed.
Instance termT_rev_append X `{registered X}: computableTime' (@rev_append X) (fun l _ => (5,fun res _ => (length l*13+4,tt))).
extract.
recRel_prettify.
solverec.
Qed.
Definition c__rev := 13.
Instance termT_rev X `{registered X}: computableTime' (@rev X) (fun l _ => ((length l + 1) *c__rev,tt)).
eapply computableTimeExt with (x:= fun l => rev_append l []).
{intro. rewrite rev_alt. reflexivity. }
extract. solverec. unfold c__rev; solverec.
Qed.
Lemma term_elAt (X:Type) (Hx : registered X) : computable (@elAt X).
Proof.
exact _.
Abort.
Section list_eqb.
Variable X : Type.
Variable eqb : X -> X -> bool.
Variable spec : forall x y, reflect (x = y) (eqb x y).
Fixpoint list_eqb A B :=
match A,B with
| nil,nil => true
| a::A',b::B' => eqb a b && list_eqb A' B'
| _,_ => false
end.
Lemma list_eqb_spec A B : reflect (A = B) (list_eqb A B).
Proof.
revert B; induction A; intros; destruct B; cbn in *; try now econstructor.
destruct (spec a x), (IHA B); cbn; econstructor; congruence.
Qed.
End list_eqb.
Section list_prod.
Context {X Y : Type}.
Context {HX : registered X} {HY : registered Y}.
Global Instance term_list_prod : computable (@list_prod X Y).
Proof.
unfold list_prod.
change (computable
(fix list_prod (l : list X) (l' : list Y) {struct l} : list (X * Y) :=
match l with
| [] => []
| x :: t => map (pair x) l' ++ list_prod t l'
end)).
extract.
Qed.
End list_prod.
Definition c__listsizeCons := 5.
Definition c__listsizeNil := 4.
Lemma size_list X `{registered X} (l:list X):
size (enc l) = sumn (map (fun x => size (enc x) + c__listsizeCons) l)+ c__listsizeNil.
Proof.
change (enc l) with (Lists.list_enc l). unfold c__listsizeCons, c__listsizeNil.
induction l.
-easy.
-cbn [Lists.list_enc map sumn size].
change ((match H with
| @mk_registered _ enc _ _ => enc
end a)) with (enc a). solverec.
Qed.
Section forallb.
Variable (X : Type).
Context (H : registered X).
Definition c__forallb := 15.
Definition forallb_time (fT : X -> nat) (l : list X) := fold_right (fun elm acc => fT elm + acc + c__forallb) c__forallb l.
Global Instance term_forallb : computableTime' (@forallb X) (fun f fT => (1, fun l _ => (forallb_time (callTime fT) l, tt))).
Proof.
extract.
solverec.
all: unfold forallb_time, c__forallb; solverec.
Defined.
End forallb.
Section list_in.
Variable (X : Type).
Variable (eqb : X -> X -> bool).
Variable eqb_correct : forall a b, a = b <-> eqb a b = true.
Definition list_in_decb := fix rec (l : list X) (x : X) : bool :=
match l with [] => false
| (l :: ls) => eqb l x || rec ls x
end.
Lemma list_in_decb_iff (l : list X) : forall x, list_in_decb l x = true <-> x el l.
Proof.
intros x. induction l.
- cbn. firstorder.
- split.
+ intros [H1 | H1]%orb_true_elim. left. now apply eqb_correct.
apply IHl in H1. now right.
+ intros [H | H].
cbn. apply orb_true_intro; left; now apply eqb_correct.
cbn. apply orb_true_intro; right; now apply IHl.
Qed.
Lemma list_in_decb_iff' (l : list X) : forall x, list_in_decb l x = false <-> not (x el l).
Proof.
intros x. split.
- intros H H'. apply list_in_decb_iff in H'. congruence.
- intros H'. destruct (list_in_decb l x) eqn:H.
+ now apply list_in_decb_iff in H.
+ reflexivity.
Qed.
Fixpoint list_incl_decb (a b : list X) :=
match a with
| [] => true
| (x::a) => list_in_decb b x && list_incl_decb a b
end.
Lemma list_incl_decb_iff (a b : list X) : a <<= b <-> list_incl_decb a b = true.
Proof.
induction a; cbn; [firstorder | ].
split; intros.
- rewrite andb_true_iff. split; [ | apply IHa; firstorder].
apply list_in_decb_iff; firstorder.
- apply andb_true_iff in H as (H1 & H2). intros x [-> | H3].
+ now apply list_in_decb_iff.
+ apply IHa in H2. apply H2, H3.
Qed.
Lemma list_incl_decb_iff' (a b : list X) : not (a <<= b) <-> list_incl_decb a b = false.
Proof.
split.
- intros H'. destruct (list_incl_decb a b) eqn:H.
+ now apply list_incl_decb_iff in H.
+ reflexivity.
- intros H H'. apply list_incl_decb_iff in H'. congruence.
Qed.
End list_in.
Section list_in_time.
Variable (X : Type).
Context {H : registered X}.
Context (eqbX : X -> X -> bool).
Context {Xeq : eqbClass eqbX}.
Context {XeqbComp : eqbCompT X}.
Definition c__listInDecb := 21.
Fixpoint list_in_decb_time (l : list X) (e : X) :=
match l with
| [] => c__listInDecb
| x :: l => eqbTime (X := X) (size (enc x)) (size (enc e)) + c__listInDecb + list_in_decb_time l e
end.
Global Instance term_list_in_decb : computableTime' (@list_in_decb X eqbX) (fun l _ => (5, fun x _ => (list_in_decb_time l x, tt))).
Proof.
extract. solverec.
all: unfold c__listInDecb; solverec.
Qed.
Definition c__list_incl_decb := 22.
Fixpoint list_incl_decb_time (a b : list X) :=
match a with
| [] => c__list_incl_decb
| (x::a) => list_in_decb_time b x + list_incl_decb_time a b + c__list_incl_decb
end.
Global Instance term_list_incl_decb : computableTime' (@list_incl_decb X eqbX)
(fun a _ => (5, fun b _ => (list_incl_decb_time a b, tt))).
Proof.
extract. solverec. all: unfold c__list_incl_decb; solverec.
Defined.
End list_in_time.
Section dupfree_dec.
Variable (X : Type).
Variable (eqbX : X -> X -> bool).
Variable (eqbX_correct : forall a b, a = b <-> eqbX a b = true).
Fixpoint dupfreeb (l : list X) : bool :=
match l with [] => true
| (x :: ls) => negb (list_in_decb eqbX ls x) && dupfreeb ls
end.
Lemma dupfreeb_correct (l : list X) : reflect (dupfree l) (dupfreeb l).
Proof.
destruct dupfreeb eqn:H; constructor.
- induction l; constructor. all: cbn in H; apply andb_prop in H.
all: cbn in H; destruct H. apply ssrbool.negbTE in H.
now intros H1%(list_in_decb_iff eqbX_correct).
now apply IHl.
- intros H0. induction H0. cbn in H; congruence.
apply IHdupfree. cbn in H; apply andb_false_elim in H. destruct H.
apply ssrbool.negbFE in e. apply (list_in_decb_iff eqbX_correct) in e. tauto.
assumption.
Qed.
Lemma dupfreeb_iff (l : list X) : dupfreeb l = true <-> dupfree l.
Proof.
specialize (dupfreeb_correct l) as H0.
destruct dupfreeb. inv H0. split; eauto. inv H0; split; eauto.
Qed.
End dupfree_dec.
Section dupfree_dec_time.
Context {X : Type}.
Context {H : registered X}.
Context (eqbX : X -> X -> bool).
Context {Xeq : eqbClass eqbX}.
Context {XeqbComp : eqbCompT X}.
Definition c__dupfreeb := 25.
Fixpoint dupfreeb_time (l : list X) :=
match l with
| [] => c__dupfreeb
| l :: ls => list_in_decb_time ls l + c__dupfreeb + dupfreeb_time ls
end.
Global Instance term_dupfreeb: computableTime' (@dupfreeb X eqbX) (fun l _ => (dupfreeb_time l, tt)).
Proof.
extract.
solverec. all: unfold c__dupfreeb; solverec.
Defined.
End dupfree_dec_time.
Section foldl_time.
Context {X Y : Type}.
Context {H : registered X}.
Context {F : registered Y}.
Definition c__fold_left := 15.
Definition c__fold_left2 := 5.
Fixpoint fold_left_time (f : X -> Y -> X) (t__f : X -> Y -> nat) (l : list Y) (acc : X) :=
(match l with
| [] =>c__fold_left
| (l :: ls) => t__f acc l + c__fold_left + fold_left_time f t__f ls (f acc l)
end ).
Global Instance term_fold_left :
computableTime' (@fold_left X Y) (fun f fT => (c__fold_left2, fun l _ => (c__fold_left2, fun acc _ => (fold_left_time f (callTime2 fT) l acc, tt)))).
Proof.
extract.
solverec. all: unfold c__fold_left, c__fold_left2; solverec.
Qed.
End foldl_time.
Section foldr_time.
Context {X Y: Type}.
Context {H:registered X}.
Context {H0: registered Y}.
Definition c__fold_right := 15.
Fixpoint fold_right_time (f : Y -> X -> X) (tf : Y -> X -> nat) (l : list Y) (acc : X) :=
match l with [] => c__fold_right
| l::ls => tf l (fold_right f acc ls) + c__fold_right + fold_right_time f tf ls acc
end.
Global Instance term_fold_right : computableTime' (@fold_right X Y) (fun f fT => (1, fun acc _ => (1, fun l _ => (fold_right_time f (callTime2 fT) l acc + c__fold_right, tt)))).
Proof.
extract. solverec. all: unfold fold_right, c__fold_right; solverec.
Qed.
End foldr_time.
Section concat_fixX.
Context {X : Type}.
Context `{registered X}.
Definition c__concat := c__app + 15.
Definition concat_time (l : list (list X)) := fold_right (fun l acc => c__concat * (|l|) + acc + c__concat) c__concat l.
Global Instance term_concat : computableTime' (@concat X) (fun l _ => (concat_time l, tt)).
Proof.
extract. unfold concat_time, c__concat. solverec.
Qed.
End concat_fixX.
seq
Definition c__seq := 20.
Definition seq_time (len : nat) := (len + 1) * c__seq.
Instance term_seq : computableTime' seq (fun start _ => (5, fun len _ => (seq_time len, tt))).
Proof.
extract. solverec.
all: unfold seq_time, c__seq; solverec.
Defined.
Definition seq_time (len : nat) := (len + 1) * c__seq.
Instance term_seq : computableTime' seq (fun start _ => (5, fun len _ => (seq_time len, tt))).
Proof.
extract. solverec.
all: unfold seq_time, c__seq; solverec.
Defined.
prodLists
Section fixprodLists.
Variable (X Y : Type).
Context `{Xint : registered X} `{Yint : registered Y}.
Definition c__prodLists1 := 22 + c__map + c__app.
Definition c__prodLists2 := 2 * c__map + 39 + c__app.
Definition prodLists_time (l1 : list X) (l2 : list Y) := (|l1|) * (|l2| + 1) * c__prodLists2 + c__prodLists1.
Global Instance term_prodLists : computableTime' (@list_prod X Y) (fun l1 _ => (5, fun l2 _ => (prodLists_time l1 l2, tt))).
Proof.
apply computableTimeExt with (x := fix rec (A : list X) (B : list Y) : list (X * Y) :=
match A with
| [] => []
| x :: A' => map (@pair X Y x) B ++ rec A' B
end).
1: { unfold list_prod. change (fun x => ?h x) with h. intros l1 l2. induction l1; easy. }
extract. solverec.
all: unfold prodLists_time, c__prodLists1, c__prodLists2; solverec.
rewrite map_length, map_time_const. leq_crossout.
Defined.
End fixprodLists.
Variable (X Y : Type).
Context `{Xint : registered X} `{Yint : registered Y}.
Definition c__prodLists1 := 22 + c__map + c__app.
Definition c__prodLists2 := 2 * c__map + 39 + c__app.
Definition prodLists_time (l1 : list X) (l2 : list Y) := (|l1|) * (|l2| + 1) * c__prodLists2 + c__prodLists1.
Global Instance term_prodLists : computableTime' (@list_prod X Y) (fun l1 _ => (5, fun l2 _ => (prodLists_time l1 l2, tt))).
Proof.
apply computableTimeExt with (x := fix rec (A : list X) (B : list Y) : list (X * Y) :=
match A with
| [] => []
| x :: A' => map (@pair X Y x) B ++ rec A' B
end).
1: { unfold list_prod. change (fun x => ?h x) with h. intros l1 l2. induction l1; easy. }
extract. solverec.
all: unfold prodLists_time, c__prodLists1, c__prodLists2; solverec.
rewrite map_length, map_time_const. leq_crossout.
Defined.
End fixprodLists.