From Undecidability.L Require Import Tactics.LTactics Prelim.MoreList Prelim.MoreBase Datatypes.LBinNums.
From Undecidability.L.Complexity Require Export Monotonic ONotation LinTimeDecodable.

Global Generalizable Variable vX.

Basics of decision problems

Semantics for [restrictedP]: fst is the subset of X which is an admsisable input, second is the Problem itself.
Definition restrictedP {X} vX := ({x:X | vX x} Prop).

Definition restrictBy {X} vX (P:XProp) : restrictedP vX := '(exist _ x _) P x.
Arguments restrictBy : clear implicits.
Arguments restrictBy {_} _ _ !_.

Definition unrestrictedP {X} (P:XProp) : restrictedP ( _ True) := restrictBy _ P.
Arguments unrestrictedP X P !x.

Record decInTime {X} `{R :registered X} `(P : restrictedP vX) (fT : ) :Type :=
  decInTime_intro
  {
    f__decInTime : X bool ;
    compIn__decInTime : computableTime (ty:=TyArr (TyB X) (TyB bool)) f__decInTime ( x _ (fT (L.size (enc x)),tt)) ;
    correct__decInTime : x (Hx : vX x), P (exist _ x Hx) f__decInTime x = true
  }.

Hint Extern 1 (computableTime (f__decInTime _) _) solve [unshelve (simple apply @compIn__decInTime)] :typeclass_instances.

Lemma complete__decInTime {X} `{R :registered X} `(P : restrictedP vX) (fT : ) (P__dec:decInTime P fT) :
   x (Hx : vX x), P (exist _ x Hx) f__decInTime P__dec x = true.
  apply correct__decInTime.
Qed.

Lemma sound__decInTime {X} `{R :registered X} `(P : restrictedP vX) (fT : ) (P__dec:decInTime P fT) :
   x, f__decInTime P__dec (proj1_sig x) = true P x.
  intros []. apply correct__decInTime.
Qed.

Lemma decInTime_restriction_antimono X `{R :registered X} vP vQ (P : restrictedP vP) (Q:restrictedP vQ) (fT : ) :
  ( x, vQ x vP x)
   ( x H__P H__Q, P (exist vP x H__P) Q (exist vQ x H__Q))
   decInTime P fT
   decInTime Q fT.
Proof.
  intros Hv Hx dP. eexists. apply compIn__decInTime with (d:=dP).
  intros x HQ. rewrite Hx with (H__P:=Hv _ HQ). apply correct__decInTime.
Qed.


Lemma decInTime_restriction_antimono_restrictBy X `{R :registered X} (vX vX' P : X Prop) (fT : ):
  ( x, vX' x vX x)
   decInTime (restrictBy vX P) fT
   decInTime (restrictBy vX' P) fT.
Proof.
  intros ?. apply decInTime_restriction_antimono. easy. cbn. easy.
Qed.


Definition inTimeO {X} `{R :registered X} `(P:restrictedP vX) f :=
   f', inhabited (decInTime P f') f' O f.

Notation "P ∈TimeO f" := (inTimeO P f) (at level 70).

Definition inTimeo {X} `{R :registered X} `(P:restrictedP vX) f :=
   f', inhabited (decInTime P f') f' o f.

Notation "P ∈Timeo f" := (inTimeo P f) (at level 70).

Properties
Inclusion
Lemma inTime_mono f g X (_ : registered X):
  f O g `(P:restrictedP vX), P TimeO f P TimeO g.
Proof.
  intros H P ? (?&?&?). unfold inTimeO.
  eexists _. split. eassumption. now rewrite .
Qed.


Time Constructibility

TODO: As we might want to project out the term, we don't use inTimeO to avoid the elim-restriction...
Definition timeConstructible (f: ) := Eval cbn [timeComplexity] in
      { f' : &
                 (f' O f)
                 * computableTime' ( n N.of_nat (f n)) ( n _ (f' n,tt))}%type.

Definition timeConstructible_computableTime' f (H:timeConstructible f) :
  computableTime' ( n N.of_nat (f n)) ( n _ ( H n,tt))
  := snd ( H).

Definition timeConstructible_inO f (H:timeConstructible f) :
   H O f := fst ( H).


Record resSizePoly X Y `{registered X} `{registered Y} (f : X Y) : Type :=
  {
    resSize__rSP : ;
    bounds__rSP : x, size (enc (f x)) resSize__rSP (size (enc x));
    poly__rSP : inOPoly resSize__rSP;
    mono__rSP : monotonic resSize__rSP;
  }.

Smpl Add 10 (simple apply poly__rSP) : inO.
Smpl Add 10 (simple apply mono__rSP) : inO.

Record polyTimeComputable X Y `{registered X} `{registered Y} (f : X Y): Type :=
  polyTimeComputable_intro
  {
    time__polyTC : ;
    comp__polyTC : computableTime' f ( x _ (time__polyTC (L.size (enc x)),tt));
    poly__polyTC : inOPoly time__polyTC ;
    mono__polyTC : monotonic time__polyTC;
    resSize__polyTC :> resSizePoly f;
  }.

Hint Extern 1 (computableTime _ _) unshelve (simple apply @comp__polyTC);eassumption :typeclass_instances.

Smpl Add 10 (simple apply poly__polyTC) : inO.
Smpl Add 10 (simple apply mono__polyTC) : inO.

Lemma inOPoly_computable (f: ):
  inOPoly f f': , inhabited (polyTimeComputable f') ( x, f x f' x) inOPoly f' monotonic f'.
Proof.
  intros (i&Hf).
  eapply inO__bound in Hf as (c&Hf).
  exists ( n c + c*n^i). split.
  -evar (time : ). [time]:intros .
   split. exists time.
   {extract. solverec.
    rewrite Nat.pow_le_mono_l. 2:now apply LNat.size_nat_enc_r.
    rewrite (LNat.size_nat_enc_r x) at 1.
    set (:= (size (enc x))). unfold time. reflexivity.
   }
   3:eexists.
   3:{intros. rewrite (LNat.size_nat_enc) at 1. rewrite Nat.pow_le_mono_l. 2:now apply (LNat.size_nat_enc_r). set (size (enc x)). instantiate (1:= _). cbn ;reflexivity.
   }
   all:unfold time;smpl_inO.
   -repeat apply conj. easy. all:smpl_inO.
Qed.


Lemma resSizePoly_compSize X Y `{registered X} `{registered Y} (f: X Y):
  resSizePoly f H : resSizePoly f, inhabited (polyTimeComputable (resSize__rSP H)).
Proof.
  intros R__spec. destruct (inOPoly_computable (poly__rSP R__spec)) as (p'&[?]&Hbounds&?&?).
  unshelve eexists.
  exists p'.
  2-5:now eauto using resSize__polyTC. intros. rewrite bounds__rSP. easy.
Qed.


Lemma polyTimeComputable_compTime X Y `{registered X} `{registered Y} (f: X Y):
  polyTimeComputable f H : polyTimeComputable f, inhabited (polyTimeComputable (time__polyTC H)) inhabited (polyTimeComputable (resSize__rSP H)).
Proof.
  intros R__spec. destruct (inOPoly_computable (poly__polyTC R__spec)) as (p'&[?]&Hbounds&?&?).
  destruct (resSizePoly_compSize R__spec) as (?&[]).
  unshelve eexists.
  exists p'.
  2-5:now eauto. eexists. eapply computesTime_timeLeq. 2:now apply extTCorrect.
  intros ? ?;cbn. now rewrite Hbounds.
Qed.


Import Functions.Decoding LTerm LOptions.
Lemma linDec_polyTimeComputable X `{_:linTimeDecodable X}: polyTimeComputable (decode X).
Proof.
  evar (time: ). [time]:intro n.
  exists time.
  -eexists _.
   eapply computesTime_timeLeq.
   2:now eapply comp_enc_lin.
   intros x _;cbn [fst snd]. split.
   2:easy.
   rewrite size_term_enc_r. generalize (size (enc x)) as n;intros.
   unfold time. reflexivity.
  -unfold time. smpl_inO.
  -unfold time. smpl_inO.
  -{evar (resSize : ). [resSize]:intro n.
    exists resSize.
    -intros t.
     specialize (decode_correct2 (X:=X) (t:=t)) as H'.
     destruct decode.
     setoid_rewrite H'. 2:reflexivity.
     *rewrite size_option,LTerm.size_term_enc_r.
      generalize (size (enc (enc x))). unfold resSize. reflexivity.
     *unfold enc at 1. cbn. unfold resSize. nia.
    -unfold resSize. smpl_inO.
    -unfold resSize. smpl_inO.
   }
Qed.