From Undecidability.L Require Import Tactics.LTactics Datatypes.LSum Datatypes.LOptions.
From Undecidability.L Require Export Prelim.LoopSum.
Section uiter.
Variable X Y : Type.
Context `{registered X}.
Context `{registered Y}.
Variable f : X -> X + Y.
Variable fT : timeComplexity (X -> X + Y).
Context `{computableTime' f fT}.
Definition uiter := Eval cbn -[enc] in rho (λ uiter x, !!(extT f) x (λ x' _ , uiter x') (λ y _ , y) I).
Lemma uiter_proc : proc uiter.
Proof. unfold uiter. Lproc. Qed.
Hint Resolve uiter_proc : LProc.
Fixpoint uiterTime n x :=
match n with
0 => 0
| S n' => fst (fT x tt) + 9 + match f x with
inl x' => uiterTime n' x'
| _ => 0
end
end.
Lemma uiter_sound n x y:
loopSum n f x = Some y -> evalLe (uiterTime n x) (uiter (enc x)) (enc y).
Proof.
unfold uiter. Intern.recRem P.
induction n in x|-*;intros Heq. now easy.
cbn in Heq|-*.
eapply (@le_evalLe_proper (match f x with inl x' => _ | _ => _ end)).
2,3:reflexivity.
2:{
destruct (f x) eqn:eqfx.
-Intern.recStepUnnamed. Lrewrite_new. rewrite eqfx. Lrewrite_new. eapply IHn. eauto.
-inv Heq. Intern.recStepUnnamed. Lrewrite_new. rewrite eqfx. Lrewrite_new. Lreflexivity.
}
destruct (f x).
all:solverec.
Qed.
Lemma uiter_total_instanceTime {Z} `{registered Z} (f': Z -> Y) (preprocess : Z -> X) preprocessT (fuel : Z -> nat)
`{computableTime' preprocess preprocessT} :
(forall x, loopSum (fuel x) f (preprocess x) = Some (f' x)) ->
computesTime (TyArr _ _) f' (λ x, uiter (extT preprocess x)) (fun z _ => (1 + fst (preprocessT z tt) + uiterTime (fuel z) (preprocess z),tt)).
Proof.
cbn [convert TH].
intros total.
eapply computesTimeTyArr_helper with (time:=(fun x _ => _)).
{ unfold uiter. now Lproc. }
intros z []. cbn. split. now reflexivity.
intros ? ->.
eexists. split. 2:reflexivity.
eapply le_evalLe_proper. 2-3:reflexivity.
2:{ eapply evalLe_trans with (t := (uiter (enc (preprocess z)))).
-now Lsimpl.
-eapply uiter_sound. apply total. }
omega.
Qed.
Lemma uiterTime_bound_onlyByN (P: nat -> _ -> Prop) boundL boundR n0 x0:
(forall n x, n < n0
-> P n x
-> match f x with
| inl x' => P (S n) x' /\ fst (fT x tt) <= boundL
| inr y => forall n', n <= n' -> fst (fT x tt) <= boundL + boundR n'
end) ->
P 0 x0 ->
uiterTime n0 x0 <= n0 * (boundL + 9) + boundR n0.
Proof.
intros H'.
pose (n0':=n0). assert (Hleq : n0<=n0') by (cbn;omega).
replace 0 with (n0'-n0) at 1 by (cbn;omega).
change (boundR n0) with (boundR n0').
change n0 with n0' in H'.
clearbody n0'.
induction n0 in x0,Hleq |-*. 1:cbn;Lia.nia.
intros HPx.
cbn -[plus].
specialize H' with (x:=x0).
destruct (f x0).
-edestruct H' as [? ->]. 2:eassumption. omega. rewrite IHn0. 2:easy.
now Lia.lia.
replace (n0'-n0) with (S (n0'-S n0)) by Lia.nia. eapply H2.
-rewrite H' with (n:=n0'-S n0) (n':=n0'). all:try now Lia.lia. eassumption.
Qed.
Lemma uiterTime_bound_recRel2 (P: nat -> _ -> Prop) (iterT : X -> nat):
(forall i x, P i x -> match f x with
| inl x' => P (S i) x' /\ iterT x' + 9 + fst (fT x tt) <= iterT x
| inr y => fst (fT x tt) + 9 <= iterT x
end) ->
forall n x,
P 0 x ->
uiterTime n x <= iterT x.
Proof.
intros H' n x.
pose (n':=n). assert (Hleq : n<=n') by (cbn;omega).
replace 0 with (n'-n) at 1 by (cbn;omega).
clearbody n'.
induction n in x,Hleq |-*. 1:cbn;Lia.nia.
intros HPx.
cbn -[plus].
specialize H' with (x:=x).
destruct (f x) as [x'|y] eqn:eq.
-edestruct H' as [? H'']. eassumption. rewrite IHn.
2:easy. 2:{ replace (n'-n) with (S (n'-S n)) by Lia.nia. eassumption. } Lia.lia.
-cbn. rewrite <- H'. 2:easy. all:Lia.lia.
Qed.
Lemma uiterTime_bound_recRel (P: nat -> _ -> Prop) (iterT : nat -> X -> nat) n:
(forall i x, P i x -> match f x with
| inl x' => P (S i) x' /\ iterT (n-i-1) x' + 9 + fst (fT x tt) <= iterT (n-i) x
| inr y => fst (fT x tt) + 9 <= iterT (n-i) x
end) ->
forall x k,
k <= n ->
P (n-k) x ->
uiterTime k x <= iterT k x.
Proof.
intros H' x k.
induction k in x |-*.
1:now cbn;Lia.nia.
intros ? HPx.
cbn -[plus].
specialize H' with (x:=x).
destruct (f x) as [x'|y] eqn:eq.
-edestruct H' as [? H'']. eassumption. rewrite IHk.
+replace (n - (n - (S k))) with (1+k) in H'' by Lia.lia.
cbn in H''. rewrite Nat.sub_0_r in H''.
Lia.nia.
+easy.
+replace (n-k) with (S (n-S k)) by Lia.nia. eassumption.
-replace (S k) with (n - (n - S k)) by Lia.lia.
rewrite <- H'. all:easy.
Qed.
Lemma uiterTime_computesRel (R : X -> X -> Prop) x0 k0 (t__step t__end : nat):
(forall k' x, k' < k0 -> pow R k' x0 x ->
fst (fT x tt) <= t__step + match f x with
| inr _ => t__end | _ => 0
end
/\ match f x with
| inl x' => R x x'
| _ => True
end) ->
uiterTime k0 x0 <= k0 * (t__step + 9) + t__end.
Proof.
intros H'.
rewrite uiterTime_bound_onlyByN
with (P:= fun n x =>pow R n x0 x)
(boundL := t__step)
(boundR := fun _ => t__end).
-Lia.lia.
-intros n x lt'' R'.
specialize H' with (1:=lt'') (2:=R') as [H' H''].
destruct (f x).
+split. 2:easy.
replace (S n) with (n+1) by omega.
eapply pow_add. eexists x. split. eauto. apply rcomp_1 with (R:=R). tauto.
+intro. omega.
-reflexivity.
Qed.
End uiter.
Hint Resolve uiter_proc : LProc.
Arguments uiter _ _ _ _ _ _ _ : clear implicits.
Arguments uiter {X Y H H0} f {fT H1}.
From Undecidability.L Require Export Prelim.LoopSum.
Section uiter.
Variable X Y : Type.
Context `{registered X}.
Context `{registered Y}.
Variable f : X -> X + Y.
Variable fT : timeComplexity (X -> X + Y).
Context `{computableTime' f fT}.
Definition uiter := Eval cbn -[enc] in rho (λ uiter x, !!(extT f) x (λ x' _ , uiter x') (λ y _ , y) I).
Lemma uiter_proc : proc uiter.
Proof. unfold uiter. Lproc. Qed.
Hint Resolve uiter_proc : LProc.
Fixpoint uiterTime n x :=
match n with
0 => 0
| S n' => fst (fT x tt) + 9 + match f x with
inl x' => uiterTime n' x'
| _ => 0
end
end.
Lemma uiter_sound n x y:
loopSum n f x = Some y -> evalLe (uiterTime n x) (uiter (enc x)) (enc y).
Proof.
unfold uiter. Intern.recRem P.
induction n in x|-*;intros Heq. now easy.
cbn in Heq|-*.
eapply (@le_evalLe_proper (match f x with inl x' => _ | _ => _ end)).
2,3:reflexivity.
2:{
destruct (f x) eqn:eqfx.
-Intern.recStepUnnamed. Lrewrite_new. rewrite eqfx. Lrewrite_new. eapply IHn. eauto.
-inv Heq. Intern.recStepUnnamed. Lrewrite_new. rewrite eqfx. Lrewrite_new. Lreflexivity.
}
destruct (f x).
all:solverec.
Qed.
Lemma uiter_total_instanceTime {Z} `{registered Z} (f': Z -> Y) (preprocess : Z -> X) preprocessT (fuel : Z -> nat)
`{computableTime' preprocess preprocessT} :
(forall x, loopSum (fuel x) f (preprocess x) = Some (f' x)) ->
computesTime (TyArr _ _) f' (λ x, uiter (extT preprocess x)) (fun z _ => (1 + fst (preprocessT z tt) + uiterTime (fuel z) (preprocess z),tt)).
Proof.
cbn [convert TH].
intros total.
eapply computesTimeTyArr_helper with (time:=(fun x _ => _)).
{ unfold uiter. now Lproc. }
intros z []. cbn. split. now reflexivity.
intros ? ->.
eexists. split. 2:reflexivity.
eapply le_evalLe_proper. 2-3:reflexivity.
2:{ eapply evalLe_trans with (t := (uiter (enc (preprocess z)))).
-now Lsimpl.
-eapply uiter_sound. apply total. }
omega.
Qed.
Lemma uiterTime_bound_onlyByN (P: nat -> _ -> Prop) boundL boundR n0 x0:
(forall n x, n < n0
-> P n x
-> match f x with
| inl x' => P (S n) x' /\ fst (fT x tt) <= boundL
| inr y => forall n', n <= n' -> fst (fT x tt) <= boundL + boundR n'
end) ->
P 0 x0 ->
uiterTime n0 x0 <= n0 * (boundL + 9) + boundR n0.
Proof.
intros H'.
pose (n0':=n0). assert (Hleq : n0<=n0') by (cbn;omega).
replace 0 with (n0'-n0) at 1 by (cbn;omega).
change (boundR n0) with (boundR n0').
change n0 with n0' in H'.
clearbody n0'.
induction n0 in x0,Hleq |-*. 1:cbn;Lia.nia.
intros HPx.
cbn -[plus].
specialize H' with (x:=x0).
destruct (f x0).
-edestruct H' as [? ->]. 2:eassumption. omega. rewrite IHn0. 2:easy.
now Lia.lia.
replace (n0'-n0) with (S (n0'-S n0)) by Lia.nia. eapply H2.
-rewrite H' with (n:=n0'-S n0) (n':=n0'). all:try now Lia.lia. eassumption.
Qed.
Lemma uiterTime_bound_recRel2 (P: nat -> _ -> Prop) (iterT : X -> nat):
(forall i x, P i x -> match f x with
| inl x' => P (S i) x' /\ iterT x' + 9 + fst (fT x tt) <= iterT x
| inr y => fst (fT x tt) + 9 <= iterT x
end) ->
forall n x,
P 0 x ->
uiterTime n x <= iterT x.
Proof.
intros H' n x.
pose (n':=n). assert (Hleq : n<=n') by (cbn;omega).
replace 0 with (n'-n) at 1 by (cbn;omega).
clearbody n'.
induction n in x,Hleq |-*. 1:cbn;Lia.nia.
intros HPx.
cbn -[plus].
specialize H' with (x:=x).
destruct (f x) as [x'|y] eqn:eq.
-edestruct H' as [? H'']. eassumption. rewrite IHn.
2:easy. 2:{ replace (n'-n) with (S (n'-S n)) by Lia.nia. eassumption. } Lia.lia.
-cbn. rewrite <- H'. 2:easy. all:Lia.lia.
Qed.
Lemma uiterTime_bound_recRel (P: nat -> _ -> Prop) (iterT : nat -> X -> nat) n:
(forall i x, P i x -> match f x with
| inl x' => P (S i) x' /\ iterT (n-i-1) x' + 9 + fst (fT x tt) <= iterT (n-i) x
| inr y => fst (fT x tt) + 9 <= iterT (n-i) x
end) ->
forall x k,
k <= n ->
P (n-k) x ->
uiterTime k x <= iterT k x.
Proof.
intros H' x k.
induction k in x |-*.
1:now cbn;Lia.nia.
intros ? HPx.
cbn -[plus].
specialize H' with (x:=x).
destruct (f x) as [x'|y] eqn:eq.
-edestruct H' as [? H'']. eassumption. rewrite IHk.
+replace (n - (n - (S k))) with (1+k) in H'' by Lia.lia.
cbn in H''. rewrite Nat.sub_0_r in H''.
Lia.nia.
+easy.
+replace (n-k) with (S (n-S k)) by Lia.nia. eassumption.
-replace (S k) with (n - (n - S k)) by Lia.lia.
rewrite <- H'. all:easy.
Qed.
Lemma uiterTime_computesRel (R : X -> X -> Prop) x0 k0 (t__step t__end : nat):
(forall k' x, k' < k0 -> pow R k' x0 x ->
fst (fT x tt) <= t__step + match f x with
| inr _ => t__end | _ => 0
end
/\ match f x with
| inl x' => R x x'
| _ => True
end) ->
uiterTime k0 x0 <= k0 * (t__step + 9) + t__end.
Proof.
intros H'.
rewrite uiterTime_bound_onlyByN
with (P:= fun n x =>pow R n x0 x)
(boundL := t__step)
(boundR := fun _ => t__end).
-Lia.lia.
-intros n x lt'' R'.
specialize H' with (1:=lt'') (2:=R') as [H' H''].
destruct (f x).
+split. 2:easy.
replace (S n) with (n+1) by omega.
eapply pow_add. eexists x. split. eauto. apply rcomp_1 with (R:=R). tauto.
+intro. omega.
-reflexivity.
Qed.
End uiter.
Hint Resolve uiter_proc : LProc.
Arguments uiter _ _ _ _ _ _ _ : clear implicits.
Arguments uiter {X Y H H0} f {fT H1}.