From Undecidability.L.Prelim Require Import ARS MoreBase.
Definition loopSum {X} {Y} :=
fix loopSum n (f:X -> X + Y) (x:X) {struct n}:=
match n with
0 => None
| S n => match f x with
| inl x' => loopSum n f x'
| inr y => Some y
end
end.
Definition loopSum_mono X Y f x y n n':
n <= n' -> @loopSum X Y n f x = Some y -> loopSum n' f x = Some y.
Proof.
induction n in n',x|-*;intros H. now inversion 1.
-inv H. easy. cbn. destruct _. 2:easy. apply IHn. omega.
Qed.
Lemma loopSum_sound_rel X Y {R:X->X->Prop} k n x y (f: X -> X + Y):
(forall x y, R x y -> f x = inl y) ->
pow R k x y ->
loopSum (k+n) f x = loopSum n f y.
Proof.
intros H1 R1.
induction k in R1,x|-*.
-inv R1. reflexivity.
-change (S k) with (1+k) in R1. eapply pow_add in R1 as (x'&R2&R1).
eapply rcomp_1 in R2. apply H1 in R2. cbn.
rewrite R2. now apply IHk.
Qed.
Lemma loopSum_rel_correct2 X Y {R:X->X->Prop} k x y (f: X -> X + Y):
(forall x, match f x with
| inl y => R x y
| inr _ => terminal R x
end)->
loopSum k f x = Some y ->
exists i x', i < k /\ loopSum k f x = loopSum (k-i) f x'
/\ pow R i x x'
/\ terminal R x'
/\ f x' = inr y.
Proof.
intros H1 Heq.
induction k in Heq,x|-*. now inv Heq.
cbn in Heq.
specialize (H1 x).
destruct (f x) eqn:eqf.
-eapply IHk in Heq as (i&x'&?&?&?&?&?).
eexists (1 + i),x'.
repeat eapply conj.
+omega.
+cbn. rewrite eqf. easy.
+eapply pow_add;do 2 esplit.
eapply rcomp_1 with (R:=R). all:eassumption.
+easy.
+easy.
-inv Heq.
exists 0,x.
repeat eapply conj.
all:solve [easy|omega].
Qed.
Definition loopSum {X} {Y} :=
fix loopSum n (f:X -> X + Y) (x:X) {struct n}:=
match n with
0 => None
| S n => match f x with
| inl x' => loopSum n f x'
| inr y => Some y
end
end.
Definition loopSum_mono X Y f x y n n':
n <= n' -> @loopSum X Y n f x = Some y -> loopSum n' f x = Some y.
Proof.
induction n in n',x|-*;intros H. now inversion 1.
-inv H. easy. cbn. destruct _. 2:easy. apply IHn. omega.
Qed.
Lemma loopSum_sound_rel X Y {R:X->X->Prop} k n x y (f: X -> X + Y):
(forall x y, R x y -> f x = inl y) ->
pow R k x y ->
loopSum (k+n) f x = loopSum n f y.
Proof.
intros H1 R1.
induction k in R1,x|-*.
-inv R1. reflexivity.
-change (S k) with (1+k) in R1. eapply pow_add in R1 as (x'&R2&R1).
eapply rcomp_1 in R2. apply H1 in R2. cbn.
rewrite R2. now apply IHk.
Qed.
Lemma loopSum_rel_correct2 X Y {R:X->X->Prop} k x y (f: X -> X + Y):
(forall x, match f x with
| inl y => R x y
| inr _ => terminal R x
end)->
loopSum k f x = Some y ->
exists i x', i < k /\ loopSum k f x = loopSum (k-i) f x'
/\ pow R i x x'
/\ terminal R x'
/\ f x' = inr y.
Proof.
intros H1 Heq.
induction k in Heq,x|-*. now inv Heq.
cbn in Heq.
specialize (H1 x).
destruct (f x) eqn:eqf.
-eapply IHk in Heq as (i&x'&?&?&?&?&?).
eexists (1 + i),x'.
repeat eapply conj.
+omega.
+cbn. rewrite eqf. easy.
+eapply pow_add;do 2 esplit.
eapply rcomp_1 with (R:=R). all:eassumption.
+easy.
+easy.
-inv Heq.
exists 0,x.
repeat eapply conj.
all:solve [easy|omega].
Qed.