Fixpoint timeComplexity t (tt: TT t) : Type :=
match tt with
! _ => unit
| @TyArr t1 t2 tt1 tt2 => t1 -> timeComplexity tt1 -> (nat*timeComplexity tt2)
end.
Arguments timeComplexity : clear implicits.
Arguments timeComplexity _ {_}.
Fixpoint computesTime {t} (ty : TT t) : forall (x:t) (xInt :term) (xTime :timeComplexity t), Type :=
match ty with
!_ => fun x xInt _=> xInt = enc x
| @TyArr t1 t2 tt1 tt2 =>
fun f fInt fTime =>
proc fInt *
forall (y : t1) yInt (yTime:timeComplexity t1),
computesTime y yInt yTime
-> let fyTime := fTime y yTime in
{v : term & (redLe (fst fyTime) (fInt yInt) v) * computesTime (f y) v (snd fyTime)}
end%type.
Arguments computesTime {_} _ _ _ _.
Class computableTime {X : Type} (ty : TT X) (x : X) evalTime: Type :=
{
extT : extracted x;
extTCorrect : computesTime ty x extT evalTime
}.
Existing Instance extT|4.
Global Arguments computableTime {X} {ty} x.
Global Arguments extT {X} {ty} x {_ computableTime} : simpl never.
Global Arguments extTCorrect {X} ty x {_ computableTime} : simpl never.
Definition evalTime X ty x evalTime (computableTime : @computableTime X ty x evalTime):=evalTime.
Global Arguments evalTime {X} {ty} x {evalTime computableTime}.
Local Fixpoint notHigherOrder t (ty : TT t) :=
match ty with
TyArr (TyB _) ty2 => notHigherOrder ty2
| TyB _ => True
| _ => False
end.
Local Lemma computesTime_computes_intern s t (ty: TT t) f evalTime:
notHigherOrder ty -> computesTime ty f s evalTime -> computes ty f s.
Proof.
revert s f.
induction ty;intros s f H int.
- exact int.
-destruct ty1; cbn in H. 2:tauto.
clear IHty1.
cbn. destruct int as [ps ints]. cbn in ints.
split. tauto.
intros. subst.
edestruct (ints a _ tt eq_refl) as(v&R'&?).
exists v. split. eapply redLe_star_subrelation. all:eauto.
Defined.
Lemma computableTime_computable X (ty : TT X) (x:X) fT :
notHigherOrder ty -> computableTime x fT -> computable x.
Proof.
intros H I. eexists (extT x). destruct I. eapply computesTime_computes_intern. all:eauto.
Defined.
Hint Extern 10 (@computable ?t ?ty ?f) =>
(solve [let H:= fresh "H" in eassert (H : @computableTime t ty f _) by exact _;
( (exact (computableTime_computable (ty:=ty) Logic.I H))|| idtac "Can not derive computable instance from computableTime for higher-order-function" f)]): typeclass_instances.
Lemma computesTimeProc t (ty : TT t) (f : t) fInt fT:
computesTime ty f fInt fT-> proc fInt.
Proof.
destruct ty.
-intros ->. unfold enc. now destruct R.
-now intros [? _].
Qed.
Lemma proc_extT {X : Type} (ty : TT X) (x : X) fT ( H : computableTime x fT) : proc (extT x).
Proof.
unfold extT. destruct H as [? H]. now eapply computesTimeProc in H.
Qed.
Instance reg_is_extT ty (R : registered ty) (x : ty): computableTime x tt.
Proof.
exists (enc x). split;constructor.
Defined.
Lemma computesTimeTyB (t:Type) (x:t) `{registered t}: computesTime (TyB t) x (extT x) tt.
Proof.
unfold extT. now destruct H.
Qed.
Instance extTApp' t1 t2 {tt1:TT t1} {tt2 : TT t2} (f: t1 -> t2) (x:t1) fT xT (Hf : computableTime f fT) (Hx : computableTime x xT) : computableTime (f x) (snd (fT x xT)).
Proof.
destruct Hf as [fInt H], Hx as [xInt xInts].
eexists (projT1 ((snd H) x xInt xT xInts)).
destruct H as [p fInts]. cbn in *.
destruct (fInts x xInt xT xInts) as (v&E&fxInts).
eassumption.
Defined.
Lemma extTApp t1 t2 {tt1:TT t1} {tt2 : TT t2} (f: t1 -> t2) (x:t1) fT xT (Hf : computableTime f fT) (Hx : computableTime x xT) :
(extT f) (extT x) >(<= fst (evalTime f x (evalTime x))) extT (f x).
Proof.
unfold extT.
destruct Hf as [fInt [fP fInts]], Hx as [xInt xInts]. cbn.
destruct (fInts x xInt xT xInts) as (v&E&fxInts). apply E.
Qed.
Lemma extT_is_enc t1 (R:registered t1) (x: t1) xT (Hf : computableTime x xT) :
@extT _ _ x xT Hf = enc x.
Proof.
unfold extT.
destruct Hf. assumption.
Defined.
Lemma computesTimeTyArr_helper t1 t2 (tt1 : TT t1) (tt2 : TT t2) f fInt time fT:
proc fInt
->
(forall (y : t1) yT,
(time y yT<= fst (fT y yT)) *
forall (yInt : term),
computesTime tt1 y yInt yT
-> {v : term & evalLe (time y yT) (fInt yInt) v * (proc v -> computesTime tt2 (f y) v (snd (fT y yT)))})%type
-> computesTime (tt1 ~> tt2) f fInt fT.
Proof.
intros H0 H. split. tauto.
intros y yInt yT yInts.
specialize (H y yT) as (lt&H).
edestruct H as (v&E&Hv). eassumption.
exists v.
split. rewrite <- lt. now apply E.
apply Hv.
apply evalLe_eval_subrelation in E. split. rewrite <- E. apply app_closed. apply H0. apply computesTimeProc in yInts. apply yInts. apply E.
Qed.
Definition computesTimeIf {t} (ty : TT t) (f:t) (fInt : term) (P:timeComplexity t-> Prop) : Type :=
forall fT, P fT -> computesTime ty f fInt fT.
Arguments computesTimeIf {_} _ _ _ _.
Lemma computesTimeIfStart t1 (tt1 : TT t1) (f : t1) (fInt : term) P fT:
computesTimeIf tt1 f fInt P -> P fT -> computesTime tt1 f fInt fT.
Proof.
intros ?. cbn. eauto.
Qed.
Definition computesTimeExp {t} (ty : TT t) (f:t) (s:term) (i:nat) (fInt : term) (fT:timeComplexity t) : Type :=
evalLe i s fInt * computesTime ty f fInt fT.
Arguments computesTimeExp {_} _ _ _ _ _ _.
Lemma computesTimeExpStart t1 (tt1 : TT t1) (f : t1) (fInt : term) fT:
proc fInt ->
{v :term & computesTimeExp tt1 f fInt 0 v fT} -> computesTime tt1 f fInt fT.
Proof.
intros ? (?&[e lam]&?). decide (fInt=x). subst x. assumption.
edestruct n. destruct e as ([]&?&?). assumption. inv H0.
Qed.
Lemma computesTimeExpStep t1 t2 (tt1 : TT t1) (tt2 : TT t2) (f : t1 -> t2) (s:term) k k' fInt fT:
k' = k -> evalIn k' s fInt -> closed s ->
(forall (y : t1) (yInt : term) yT, computesTime tt1 y yInt yT
-> {v : term & computesTimeExp tt2 (f y) (s yInt) (fst (fT y yT) +k) v (snd (fT y yT))}%type) ->
computesTimeExp (tt1 ~> tt2) f s k fInt fT.
Proof.
intros -> (R1&p1) ? H. split. split. eexists;split. 2:eassumption. omega. tauto. split. split. 2:tauto. rewrite <- R1. tauto.
intros y yInt yT yInted.
edestruct (H y yInt yT yInted) as (v&H2&?).
eexists v. split.
edestruct (evalLe_trans_rev) as (H3&R3). exact H2. apply pow_step_congL. eassumption. reflexivity.
destruct fT. cbn in *. replace (n+k-k) with n in R3 by omega. apply R3. tauto.
Qed.
Lemma computesTimeExt X (tt : TT X) (x x' : X) s fT:
extEq x x' -> computesTime tt x s fT -> computesTime tt x' s fT.
Proof.
induction tt in x,x',s,fT |-*;intros eq.
-inv eq. tauto.
-cbn in eq|-*. intros [H1 H2]. split. 1:tauto.
intros y t yT ints.
specialize (H2 y t yT ints ) as (v&R&H2).
exists v. split. 1:assumption.
eapply IHtt2. 2:now eassumption.
apply eq.
Qed.
Lemma computableTimeExt X (tt : TT X) (x x' : X) fT:
extEq x x' -> computableTime x fT -> computableTime x' fT.
intros ? [s ?]. eexists. eauto using computesTimeExt.
Defined.
Fixpoint changeResType_TimeComplexity t1 (tt1 : TT t1) Y {R: registered Y} {struct tt1}:
forall (fT: timeComplexity t1) , @timeComplexity _ (projT2 (changeResType tt1 (TyB Y))):= (
match tt1 with
@TyB t1 tt1 => fun fT => fT
| TyArr tt11 tt12 => fun fT x xT => (fst (fT x xT),changeResType_TimeComplexity (snd (fT x xT)))
end).
Lemma cast_registeredAs_TimeComplexity t1 (tt1 : TT t1) Y (R: registered Y) fT (cast : projT1 (resType tt1) -> Y) (f:t1)
(Hc : injective cast) :
projT2 (resType tt1) = registerAs cast Hc ->
computableTime (ty:=projT2 (changeResType tt1 (TyB Y))) (insertCast R cast f) (changeResType_TimeComplexity fT)->
computableTime f fT.
Proof.
intros H [s ints].
eexists s.
induction tt1 in cast,f,fT,H,s,ints,Hc |- *.
-cbn in H,ints|-*;unfold enc in *. rewrite H. exact ints.
-destruct ints as (?&ints). split. assumption.
intros x s__x int__x T__x.
specialize (ints x s__x int__x T__x) as (v &?&ints).
exists v. split. tauto.
eapply IHtt1_2. all:eassumption.
Qed.
Definition cnst {X} (x:X):nat. exact 0. Qed.
Definition callTime2 {X Y Z} `{registered X} `{registered Y} `{registered Z}
(fT : timeComplexity (X -> Y -> Z)) x y : nat :=
let '(k,f):= fT x tt in k + fst (f y tt).
Arguments callTime2 / {_ _ _ _ _ _}.