Lrewrite: simplification with corrextness statements

This module simplifies L-terms by rewriting with correctness-lemmatas form the hint library Lrewrite

(* For Time Complexity: *)

Lemma redLe_app_helper s s' t t' u i j k:
  s >(<= i) s' -> t >(<= j) t' -> s' t' >(<=k) u -> s t >(<=i+j+k) u.
Proof.
  intros (i' & ? & R1) (j' & ? & R2) (k' & ? & R3).
  exists ((i'+j')+k'). split. omega. apply pow_trans with (t:=s' t').
  apply pow_trans with (t:=s' t).
  now apply pow_step_congL.
  now apply pow_step_congR. eauto.
Qed.

Lemma pow_app_helper s s' t t' u:
  s >* s' -> t >* t' -> s' t' >* u -> s t >* u.
Proof.
  now intros -> -> -> .
Qed.

Lemma LrewriteTime_helper s s' t i :
  s' = s -> s >(<= i) t -> s' >(<= i) t.
Proof.
  intros;now subst.
Qed.

Lemma Lrewrite_helper s s' t :
  s' = s -> s >* t -> s' >* t.
Proof.
  intros;now subst.
Qed.

Lemma Lrewrite_equiv_helper s s' t t' :
  s >* s' -> t >* t' -> s' == t' -> s == t.
Proof.
  intros -> ->. tauto.
Qed.

Ltac find_Lrewrite_lemma :=
  match goal with
    |- ?R ?s _ => is_ground s;solve [eauto 20 with Lrewrite nocore|eassumption]
  end.

Hint Extern 0 (proc _) => solve [Lproc] : Lrewrite.
Hint Extern 0 (lambda _) => solve [Lproc] : Lrewrite.
Hint Extern 0 (closed _) => solve [Lproc] : Lrewrite.

Hint Extern 0 (_ >(<= _ ) _) => eapply pow_redLe_subrelation : Lrewrite.
Hint Extern 0 (_ >* _) => eapply redLe_star_subrelation : Lrewrite.
Hint Extern 0 (_ >* _) => eapply eval_star_subrelation : Lrewrite.

(* replace int by intT if possible*)

(* generate all goals for bottom-up-rewriting*)
Ltac Lrewrite_generateGoals :=
  lazymatch goal with
  | |- app _ _ >(<= _ ) _ => eapply redLe_app_helper;[instantiate;Lrewrite_generateGoals..|idtac]
  | |- app _ _ >* _ => eapply pow_app_helper ;[instantiate;Lrewrite_generateGoals..|idtac]
  | |- ?s >(<= _ ) _ => (is_evar s;fail 10000) ||idtac
  | |- ?s >* _ => (is_evar s;reflexivity) ||idtac
  end.

Ltac useFixHypo :=
  lazymatch goal with
    |- ?s >* ?t =>
    is_ground s;
    let IH := fresh "IH" in
    unshelve epose (IH:=_);[|(notypeclasses refine (_:{v:term & computesExp _ _ s v}));solve [eauto]|];
    let v := constr:(projT1 IH) in
    let IHR := constr:(fst (projT2 IH)) in
    let IHInts := constr:( snd (projT2 IH)) in
    lazymatch type of IHInts with
      computes ?ty _ ?v =>
      rewrite IHR;change v with (@ext _ ty _ (Build_computable IHInts))
    end
  | |- ?s >(<= ?i ) ?t=>
    is_ground s;
    let IH := fresh "IH" in
    unshelve epose (IH:=_);[|(notypeclasses refine (_:{v:term & computesTimeExp _ _ s _ v _}));solve [eauto]|];
    let v := constr:(projT1 IH) in
    assert (IHR := fst (projT2 IH));
    let IHInts := constr:( snd (projT2 IH)) in
    lazymatch type of IHInts with
      computesTime ?ty _ ?v _=>
      change v with (@extT _ ty _ _ (Build_computableTime IHInts)) in IHR;eapply redLe_trans;[exact (proj1 IHR)|]
    end
  end.

Ltac LrewriteTime_solveGoals :=
  try find_Lrewrite_lemma;
  try useFixHypo;
  lazymatch goal with
    (* Computability: *)
  | |- @ext _ (@TyB _ _) _ ?inted >* _ =>
    (progress rewrite (ext_is_enc);[>LrewriteTime_solveGoals..]) || Lreflexivity
  | |- app (@ext _ (_ ~> _ ) _ _) (ext _) >* _ => etransitivity;[apply extApp|LrewriteTime_solveGoals]
  | |- app (@ext _ (_ ~> _ ) _ ?ints) (@enc _ ?reg ?x) >* ?v =>
    change (app (@ext _ _ _ ints) (@ext _ _ _ (reg_is_ext reg x)) >* v);LrewriteTime_solveGoals

                                                                          


  (* Complexity*)
  | |- @extT _ (@TyB _ _) _ _ ?inted >(<= _ ) _ =>
    (progress rewrite (extT_is_enc);[>LrewriteTime_solveGoals..]) || Lreflexivity
  | |- app (@extT _ (_ ~> _ ) _ _ ?fInts) (@extT _ _ _ _ ?xInts) >(<= _ ) _ => eapply redLe_trans;
    [let R := fresh "R" in
     specialize (extTApp fInts xInts) as R;
     lazymatch type of R with
       (* As we might build n using the projection on an on-ty-fly constructed computableTime-instance, we mustavoid it to depend on the proof that the time function is correct*)
       ?s >(<= ?n) ?t => let n' := eval unfold evalTime in n in
                          change (s >(<= n') t) in R
     end; exact R
    |LrewriteTime_solveGoals]
  | |- app (@extT _ (_ ~> _ ) _ _ ?ints) (@enc _ ?reg ?x) >(<= ?k ) ?v =>
    change (app (@extT _ _ _ _ ints) (@extT _ _ _ _ (reg_is_extT reg x)) >(<= k) v);LrewriteTime_solveGoals



(* do nothing to debug: use idtac here!*)
  | |- _ >(<= _ ) _ => Lreflexivity
  | |- _ >* _ => reflexivity (* TO DEBUG: use idtac here*)
  end.

Ltac LrewriteTime :=
  lazymatch goal with
    |- ?rel ?s _ =>
    lazymatch goal with
    | |- _ >(<=_) _ =>
      try (eapply redLe_trans;[Lrewrite_generateGoals;[>LrewriteTime_solveGoals..]|])
    | |- _ >* _ =>
      try (etransitivity;[Lrewrite_generateGoals;[>LrewriteTime_solveGoals..]|])
    end;
      lazymatch goal with
        |- ?rel s _ => fail "No Progress (progress in indices are not currently noticed...)"
      (* don;t change evars if you did not make progress!*)
      | |- _ => idtac
      end
  | |- _ => idtac
  end.

Ltac Lrewrite :=
  lazymatch goal with
  | |- _ >(<= _) _ => LrewriteTime
  | |- _ ⇓(<= _) _ => try (eapply evalLe_trans;[progress Lrewrite;Lreflexivity|])
  | |- _ ⇓( _) _ => idtac "Lrewrite does not support s ⇓(k) y, only s ⇓(<=k) t)" (*try (eapply evalIn_trans;progress Lrewrite;Lreflexivity|)*)
  | |- _ >(_) _ => idtac "Lrewrite does not support s >(k) y, only s >(<=k) t)"
  | |- _ >* _ => LrewriteTime (* Lrewrite_old *)
  | |- eval _ _ => try (eapply eval_helper;[progress Lrewrite;Lreflexivity|])
  | |- _ == _ => try (progress (eapply Lrewrite_equiv_helper;[try Lrewrite;reflexivity..|]))
  end.

Tactic Notation "Lrewrite" := Lrewrite.

Lemma Lrewrite_in_helper s t s' t' :
  s >* s' -> t >* t' -> s == t -> s' == t'.
Proof.
  intros R1 R2 E. now rewrite R1,R2 in E.
Qed.

Tactic Notation "Lrewrite" "in" hyp(_H) :=
  lazymatch type of _H with
    | _ == _ => eapply Lrewrite_in_helper in _H; [ |try Lrewrite;reflexivity |try Lrewrite;reflexivity]
    | _ >* _ => idtac "not supported yet"
  end.