(**************************************************************)
(* Copyright Dominique Larchey-Wendling * *)
(* *)
(* * Affiliation LORIA -- CNRS *)
(**************************************************************)
(* This file is distributed under the terms of the *)
(* CeCILL v2 FREE SOFTWARE LICENSE AGREEMENT *)
(**************************************************************)
(* Copyright Dominique Larchey-Wendling * *)
(* *)
(* * Affiliation LORIA -- CNRS *)
(**************************************************************)
(* This file is distributed under the terms of the *)
(* CeCILL v2 FREE SOFTWARE LICENSE AGREEMENT *)
(**************************************************************)
Require Import Arith Nat Omega List Bool Setoid.
Require Import utils_tac gcd prime binomial sums bool_nat luca.
Require Import cipher dio_logic dio_expo dio_binary.
Set Implicit Arguments.
Local Infix "≲" := binary_le (at level 70, no associativity).
Local Notation power := (mscal mult 1).
Local Notation "∑" := (msum plus 0).
Local Infix "⇣" := nat_meet (at level 40, left associativity).
Local Infix "⇡" := nat_join (at level 50, left associativity).
Theorem seqs_of_ones_diophantine l q u u1 : 𝔻P l -> 𝔻P q -> 𝔻P u -> 𝔻P u1
-> 𝔻R (fun v => seqs_of_ones (l v) (q v) (u v) (u1 v)).
Proof.
intros.
apply dio_rel_equiv with (1 := fun v => seqs_of_ones_dio (l v) (q v) (u v) (u1 v)).
dio_rel_auto.
Defined.
Hint Resolve seqs_of_ones_diophantine.
(* a is the q-cipher of some l-tuple *)
Theorem Code_diophantine l q a : 𝔻P l -> 𝔻P q -> 𝔻P a
-> 𝔻R (fun v => Code (l v) (q v) (a v)).
Proof.
intros.
apply dio_rel_equiv with (1 := fun v => Code_dio (l v) (q v) (a v)).
dio_rel_auto.
Defined.
Hint Resolve Code_diophantine.
(* c is the q-cipher of the l-tuple <x,...,x> *)
Theorem Const_diophantine l q c x : 𝔻P l -> 𝔻P q -> 𝔻P c -> 𝔻P x
-> 𝔻R (fun v => Const (l v) (q v) (c v) (x v)).
Proof.
intros.
apply dio_rel_equiv with (1 := fun v => Const_dio (l v) (q v) (c v) (x v)).
dio_rel_auto.
Defined.
Hint Resolve Const_diophantine.
(* a is the q-cipher of the l-tuple <0,...,l-1> *)
Theorem CodeNat_diophantine l q a : 𝔻P l -> 𝔻P q -> 𝔻P a -> 𝔻R (fun v => CodeNat (l v) (q v) (a v)).
Proof.
intros.
apply dio_rel_equiv with (1 := fun v => CodeNat_dio (l v) (q v) (a v)).
dio_rel_auto.
Defined.
Hint Resolve CodeNat_diophantine.
(* Testing whether a is the q cipher of the sum of the tuples of q-ciphers b and c *)
Theorem Code_plus_diophantine a b c : 𝔻P a -> 𝔻P b -> 𝔻P c
-> 𝔻R (fun v => Code_plus (a v) (b v) (c v)).
Proof. intros; unfold Code_plus; dio_rel_auto. Defined.
(* Testing whether a is the q cipher of the product of the tuples of q-ciphers b and c *)
Theorem Code_mult_diophantine l q a b c : 𝔻P l -> 𝔻P q -> 𝔻P a -> 𝔻P b -> 𝔻P c
-> 𝔻R (fun v => Code_mult (l v) (q v) (a v) (b v) (c v)).
Proof. intros; unfold Code_mult; dio_rel_auto. Defined.
Hint Resolve Code_plus_diophantine Code_mult_diophantine.
Now we have diophantine representations of q-cipher of the following l-tuple
1) <x,...,x> (for x < 2^q)
2) <0,...,l-1>
3) testing whether some code is a q-cipher of some tuple
4) testing sum and product equality among q-ciphers