Require Import Arith Nat Omega List Bool.
From Undecidability.Shared.Libs.DLW.Utils Require Import utils_tac utils_list sums bounded_quantification.
From Undecidability.H10.Matija Require Import cipher.
From Undecidability.H10.Dio Require Import dio_logic dio_cipher dio_elem.
Set Implicit Arguments.
Local Notation power := (mscal mult 1).
Local Notation "∑" := (msum plus 0).
We show the elimination of bounded universal quantification. The proof is
based on the paper
"A new technique for obtaining diophantine representations via elimination
of bounded universal quantifiers" by Matiyasevich
with two noticable differences
a) we use r = 2^(4*q) instead of r = 2^(2*q)
2*q could work but I think the proof implied by the paper (it is not
given) that cc = aa * bb is simulated does not work well because
masked digits are can be of the form f i * g j + f j * g i
and f _ < 2^q, g _ < 2^q implies f _ * g _ < 2^(2*q) which is
good but *does not* imply f _ * g _ + f _ * g _ < 2^(2*q) !!
The argument could still work though it is going to be much
more complicated to establish formally, so I raised 2*q to 4*q
to solve straightforwardly the overflow problem of masked digits
Anyway, this 2*q value was arbitrary so it only impacts the
proof in minor ways
b) The arguments outlined between (26) and (31) are flawed I think
One should first split the k_i's in 0 <= k_2 < .... < k_d <= 2^l+1 < .... < k{m+1}
to do the computation. The upper k_i's are masked out and then you can show
that d must be m+1 with the other constraints.
Section df_mconj.
Fixpoint df_mconj k f :=
match k with
| 0 => df_true
| S k => df_conj (f 0) (df_mconj k (fun i => f (S i)))
end.
Fact df_mconj_size k f : df_size (df_mconj k f) = 3+k+∑ k (fun i => df_size (f i)).
Proof.
revert f; induction k as [ | k IHk ]; intros f; simpl; auto.
rewrite IHk; ring.
Qed.
Fact df_mconj_spec k f ν : df_pred (df_mconj k f) ν <-> forall i, i < k -> df_pred (f i) ν.
Proof.
revert f ν; induction k as [ | k IHk ]; intros f phi; simpl.
+ split; auto; intros; omega.
+ rewrite IHk; split.
* intros (? & H2) [ | i ] ?; auto; apply H2; omega.
* intros H; split; intros; apply H; omega.
Qed.
Lemma dio_rel_mconj k (P : nat -> (nat -> nat) -> Prop) :
(forall i, i < k -> dio_rel (P i))
-> dio_rel (fun ν => forall i, i < k -> P i ν).
Proof.
intros H.
apply fmap_reifier_t_default with (1 := df_true) in H.
destruct H as (f & Hf).
exists (df_mconj k f).
intros v; rewrite df_mconj_spec; split;
intros E i Hi; generalize (E _ Hi); apply Hf; trivial.
Defined.
End df_mconj.
Section dio_bounded_fall.
Section dio_bounded_elem.
Variable (k : nat).
Notation iq := (k+1). Notation il := (k+2).
Let dc_Code (c : dio_constraint) ω :=
match c with
| (u, dee_nat n) => Const (ω il) (ω iq) n (ω u)
| (u, dee_var v) => ω u = ω v
| (u, dee_par 0) => ω u = ω k
| (u, dee_par (S p)) => Const (ω il) (ω iq) (ω (k+2+p)) (ω u)
| (u, dee_comp do_add v w) => Code_plus (ω u) (ω v) (ω w)
| (u, dee_comp do_mul v w) => Code_mult (ω il) (ω iq) (ω u) (ω v) (ω w)
end.
Let dio_rel_dc_Code c : dio_rel (dc_Code c).
Proof.
destruct c as (u & [ n | v | [] | [] v w ]); unfold dc_Code; auto.
Defined.
Let dc_Code_size_Z c : (df_size_Z (proj1_sig (dio_rel_dc_Code c)) <= 70074)%Z.
Proof.
destruct c as (u & [ n | v | [] | [] v w ]); compute; discriminate.
Qed.
Let dc_Code_spec c φ π ν ω : (forall i, i < k -> is_cipher_of (ν 0) (π iq) (φ i) (π i))
-> (is_cipher_of (ν 0) (π iq) (fun n => n) (π k))
-> (forall x, dc_vars c x -> x < k)
-> (forall i, i < il -> ω i = π i)
-> (forall i, il <= i -> ω i = ν (i-il))
-> dc_Code c ω <-> forall j, j < ν 0 -> dc_eval (fun i => φ i j) (dv_lift ν j) c.
Proof.
intros G1 G2 G3 G4 G5.
assert (ω il = ν 0) as G0.
{ rewrite G5; try omega; f_equal; omega. }
destruct c as (u & [ n | v | [ | p ] | [] v w ]); simpl.
+ assert (u < k) as Hu. { apply G3; left; auto. }
rewrite G0, G4, G4; try omega.
specialize (G1 _ Hu).
unfold dc_eval; simpl; split.
* intros (g & Hg1 & Hg4).
generalize (is_cipher_of_inj G1 Hg1); intros G6.
intros; rewrite G6, Hg4; auto; omega.
* intros; exists (φ u); split; auto.
+ assert (u < k) as Hu. { apply G3; cbv; auto. }
assert (v < k) as Hv. { apply G3; cbv; auto. }
do 2 (rewrite G4; try omega).
unfold dc_eval; simpl.
apply G1 in Hu.
apply G1 in Hv.
apply (is_cipher_of_equiv Hu Hv).
+ assert (u < k) as Hu. { apply G3; cbv; auto. }
do 2 (rewrite G4; try omega).
unfold dc_eval; simpl.
apply G1 in Hu.
apply (is_cipher_of_equiv Hu G2).
+ rewrite G0, G4; try omega.
rewrite G5; try omega.
replace (il+p-il) with p by omega.
assert (u < k) as Hu. { apply G3; cbv; auto. }
rewrite G4; try omega.
apply G1 in Hu.
unfold dc_eval; simpl; split.
* intros (g & Hg1 & Hg2).
generalize (proj1 (is_cipher_of_equiv Hu Hg1) eq_refl); intros G6.
intros; rewrite G6, Hg2; auto.
* intro; exists (φ u); auto.
+ assert (Hu : u < k). { apply G3; cbv; auto. }
assert (Hv : v < k). { apply G3; cbv; auto. }
assert (Hw : w < k). { apply G3; cbv; auto. }
do 3 (rewrite G4; try omega).
apply G1 in Hu; apply G1 in Hv; apply G1 in Hw.
rewrite Code_plus_spec with (1 := Hu) (2 := Hv) (3 := Hw).
unfold dc_eval; simpl; tauto.
+ assert (Hu : u < k). { apply G3; cbv; auto. }
assert (Hv : v < k). { apply G3; cbv; auto. }
assert (Hw : w < k). { apply G3; cbv; auto. }
rewrite G0; do 4 (rewrite G4; try omega).
apply G1 in Hu; apply G1 in Hv; apply G1 in Hw.
rewrite Code_mult_spec with (1 := Hu) (2 := Hv) (3 := Hw).
unfold dc_eval; simpl; tauto.
Qed.
Let dc_list_Code ll ν := fold_right (fun c P => dc_Code c ν /\ P) True ll.
Let dio_rel_dc_list_Code ll : dio_rel (dc_list_Code ll).
Proof. induction ll; unfold dc_list_Code; simpl; auto. Qed.
Let dc_list_Code_spec ll φ π ν ω : (forall i, i < k -> is_cipher_of (ν 0) (π iq) (φ i) (π i))
-> (is_cipher_of (ν 0) (π iq) (fun n => n) (π k))
-> (forall c, In c ll -> forall x, dc_vars c x -> x < k)
-> (forall i, i < il -> ω i = π i)
-> (forall i, il <= i -> ω i = ν (i-il))
-> dc_list_Code ll ω
<-> forall j, j < ν 0 -> Forall (dc_eval (fun i => φ i j) (dv_lift ν j)) ll.
Proof.
intros G1 G2 G3 G4 G5; revert G3.
rewrite <- Forall_forall.
induction 1 as [ | c ll F1 F2 IF2 ]; simpl.
+ split; auto.
+ rewrite IF2, dc_Code_spec; auto.
split.
* intros (E1 & E2) j Hj; constructor; auto.
* intros E1; split; intros j Hj; specialize (E1 _ Hj);
rewrite Forall_cons_inv in E1; tauto.
Qed.
Let ciphers ν := CodeNat (ν il) (ν iq) (ν k) /\ forall i, i < k -> Code (ν il) (ν iq) (ν i).
Let dio_rel_ciphers : dio_rel ciphers.
Proof.
apply dio_rel_conj.
+ auto.
+ apply dio_rel_mconj; intros; auto.
Defined.
Let ciphers_spec ν : ciphers ν <-> is_cipher_of (ν il) (ν iq) (fun n => n) (ν k)
/\ exists φ, forall i, i < k -> is_cipher_of (ν il) (ν iq) (φ i) (ν i).
Proof.
unfold ciphers, Code, CodeNat.
split; intros (H1 & H2); split; auto; clear H1.
+ apply fmap_reifier_default in H2; auto.
+ destruct H2 as (phi & Hphi).
intros i Hi; exists (phi i); auto.
Qed.
Variables (ll : list dio_constraint)
(Hll : forall c x, In c ll -> dc_vars c x -> x < k).
Let Hll' : forall c, In c ll -> forall x, dc_vars c x -> x < k.
Proof. intros c ? x ?; apply (@Hll c x); auto. Qed.
Let pre_quant ν := ν il+1 < ν iq /\ ciphers ν /\ dc_list_Code ll ν.
Let dio_rel_pre_quant : dio_rel pre_quant.
Proof. unfold pre_quant; auto. Defined.
Definition dc_list_bfall ν := exists π, pre_quant (fun i => if le_lt_dec il i then ν (i-il) else π i).
Let dc_list_bfall_spec_1 ν :
dc_list_bfall ν <-> exists q φ, ν 0+1 < q
/\ (forall i j, i < k -> j < ν 0 -> φ i j < power q 2)
/\ forall j, j < ν 0 -> Forall (dc_eval (fun i => φ i j) (dv_lift ν j)) ll.
Proof.
split.
+ intros (pi & G0 & G1 & G4).
rewrite ciphers_spec in G1.
destruct (le_lt_dec il k) as [ ? | _ ]; try omega.
destruct (le_lt_dec il il) as [ _ | ? ]; try omega.
destruct (le_lt_dec il iq) as [ ? | _ ]; try omega.
replace (il-il) with 0 in * by omega.
destruct G1 as (G1 & phi & G3).
assert (forall i, i < k -> is_cipher_of (ν 0) (pi iq) (phi i) (pi i)) as G2.
{ intros i Hi; generalize (G3 _ Hi); destruct (le_lt_dec il i); auto; omega. }
clear G3.
rewrite dc_list_Code_spec with (π := pi) (φ := phi) (ν := ν) in G4; auto.
2,3: intros i Hi; destruct (le_lt_dec il i) as [ H | H ]; auto; try omega.
exists (pi iq), phi; repeat (split; auto).
intros i j Hi Hj; destruct (G2 _ Hi) as (_ & G3 & _); auto.
+ intros (q & phi & Hq & Hphi1 & Hphi2).
assert (q <= power q 2) as Hq' by (apply power_ge_n; auto).
destruct (the_cipher (fun i => i) Hq) as (u & Hu). { intros; omega. }
set (pi i := match lt_eq_lt_dec i k with
| inleft (left H) => proj1_sig (the_cipher (phi i) Hq (fun j Hj => Hphi1 _ _ H Hj))
| inleft (right H) => u
| inright H => q
end).
assert (Hpi_k : pi k = u).
{ unfold pi; destruct (lt_eq_lt_dec k k) as [ [] | ]; auto; try omega. }
assert (forall i, i < k -> is_cipher_of (ν 0) q (phi i) (pi i)) as Hpi.
{ unfold pi; intros i Hi.
destruct (lt_eq_lt_dec i k) as [ [H | ] | ]; try omega.
apply (proj2_sig (the_cipher (phi i) Hq (fun j Hj => Hphi1 _ _ H Hj))). }
assert (Hpi_q : pi iq = q).
{ unfold pi; destruct (lt_eq_lt_dec iq k) as [ [H | ] | ]; try omega. }
generalize pi Hpi_k Hpi_q Hpi; clear pi Hpi_k Hpi Hpi_q.
intros pi Hpi_k Hpi_q Hpi; subst u.
exists pi; red.
rewrite ciphers_spec.
destruct (le_lt_dec il k) as [ ? | _ ]; try omega.
destruct (le_lt_dec il il) as [ _ | ? ]; try omega.
destruct (le_lt_dec il iq) as [ ? | _ ]; try omega.
rewrite Nat.sub_diag.
subst q; repeat (split; auto).
* exists phi; intros i Hi.
destruct (le_lt_dec il i); try omega; auto.
* rewrite dc_list_Code_spec with (π := pi) (φ := phi); auto;
intros i Hi; destruct (le_lt_dec il i); auto; omega.
Qed.
Let dc_list_bfall_spec ν : (forall i, i < ν 0 -> exists φ, Forall (dc_eval φ (dv_lift ν i)) ll) <-> dc_list_bfall ν .
Proof.
rewrite dc_list_bfall_spec_1; split.
+ intros H.
apply fmmap_reifer_bound with (p := k) in H.
- destruct H as (m & phi & Hf).
set (q := power (ν 0+2+m) 2).
assert (ν 0+1 < q) as Hlq.
{ apply lt_le_trans with (ν 0+2+m); try omega.
apply power_ge_n; auto. }
assert (m <= power q 2) as Hmq.
{ apply le_trans with q.
apply le_trans with (ν 0+2+m); try omega.
apply power_ge_n; auto.
apply power_ge_n; auto. }
exists q, (fun i j => phi j i); split; [ | split ]; auto.
* intros i j Hi Hj; apply lt_le_trans with m; auto; apply Hf; auto.
* intros; apply Hf; auto.
- intros x f g Hfg.
apply Forall_impl.
intros c Hc; apply dc_eval_ext; auto.
intros z Hz; symmetry; apply Hfg, Hll with c; auto.
+ intros (q & phi & Hq & H1 & H2) j Hj.
exists (fun i => phi i j); auto.
Qed.
Theorem dio_rel_dc_list_bfall : dio_rel (fun ν => forall i, i < ν 0 -> exists φ, Forall (dc_eval φ (dv_lift ν i)) ll).
Proof.
apply dio_rel_equiv with (1 := dc_list_bfall_spec).
unfold dc_list_bfall.
destruct dio_rel_pre_quant as (f & Hf).
eexists (df_mexists il f).
intros; rewrite df_mexists_spec; split;
intros (phi & H); exists phi; revert H; rewrite <- Hf; auto.
Defined.
End dio_bounded_elem.
Theorem dio_bounded_fall P : dio_rel P -> dio_rel (fun ν => forall i, i < ν 0 -> P (dv_lift ν i)).
Proof.
intros (f & Hf).
destruct (dio_formula_elem f) as (ll & H1 & H2 & H3).
revert H2; generalize (4*df_size f); intros k H2.
generalize (dio_rel_dc_list_bfall _ H2).
apply dio_rel_equiv; intros v.
split; intros H i Hi; generalize (H _ Hi); rewrite <- Hf, H3; auto.
Defined.
End dio_bounded_fall.
Definition dv_change (ν : nat -> nat) x n := match n with 0 => x | _ => ν n end.
Section dfbfall.
Variable (f : dio_formula).
Let rho i := match i with 0 => 0 | S i => S (S i) end.
Let dfbfall_full : dio_rel (fun ν => forall i, i < ν 0 -> df_pred f (dv_change ν i)).
Proof.
assert (dio_rel (df_pred (df_ren rho f))) as H.
{ exists (df_ren rho f); tauto. }
destruct (dio_bounded_fall H) as (g & Hg).
exists g.
intros v.
rewrite Hg.
split; intros G i Hi; generalize (G _ Hi);
rewrite df_pred_ren; apply df_pred_ext;
intros [ | [ | x ] ]; simpl; auto.
Qed.
Definition dfbfall := proj1_sig dfbfall_full.
Fact dfbfall_spec : forall ν, df_pred dfbfall ν <-> forall i, i < ν 0 -> df_pred f (dv_change ν i).
Proof. apply (proj2_sig dfbfall_full). Qed.
End dfbfall.
Section df_fall_lt.
Variable (f : dio_formula) (x : dio_expression).
Definition df_fall_lt := df_subst (fun n => match n with 0 => x | S n => de_var (S n) end) (dfbfall f).
Fact df_fall_lt_spec ν : df_pred df_fall_lt ν <-> forall n, n < de_eval ν x -> df_pred f (dv_change ν n).
Proof.
unfold df_fall_lt.
rewrite df_pred_subst, dfbfall_spec.
split; intros H n Hn; generalize (H _ Hn);
apply df_pred_ext;
intros [ | ]; simpl; auto.
Qed.
End df_fall_lt.
Corollary dio_rel_fall_lt_0 (K : nat -> (nat -> nat) -> Prop) :
𝔻R (fun ν => K (ν 0) (fun n => ν (S n)))
-> 𝔻R (fun ν => forall x, x < ν 0 -> K x (fun n => ν (S n))).
Proof.
intros (fK & HK).
exists (df_fall_lt fK (de_var 0)).
intros; rewrite df_fall_lt_spec.
simpl.
split; intros H n Hn; generalize (H _ Hn); rewrite HK; auto.
Defined.
Theorem dio_rel_fall_lt a (K : nat -> (nat -> nat) -> Prop) :
𝔻P a
-> 𝔻R (fun ν => K (ν 0) (fun n => ν (S n)))
-> 𝔻R (fun ν => forall x, x < a ν -> K x ν).
Proof.
intros (ea & Ha) H.
apply dio_rel_fall_lt_0 in H.
destruct H as (f & Hf).
exists (df_subst (fun n => match n with 0 => ea | S n => de_var n end) f).
intro; rewrite df_pred_subst, Hf.
simpl; split; intros H n Hn; apply H; revert Hn; rewrite Ha; auto.
Defined.
Check dio_rel_fall_lt.
Print Assumptions dio_rel_fall_lt.
Hint Resolve dio_rel_fall_lt.
Theorem dio_rel_fall_lt_bound a (K : nat -> nat -> (nat -> nat) -> Prop) :
𝔻P a
-> 𝔻R (fun ν => K (ν 0) (a (fun n => ν (S n))) (fun n => ν (S n)))
-> 𝔻R (fun ν => forall x, x < a ν -> K x (a ν) ν).
Proof.
intros; apply dio_rel_fall_lt; auto.
Qed.
Hint Resolve dio_rel_fall_lt_bound.
Theorem dio_rel_fall_le a (K : nat -> (nat -> nat) -> Prop) :
𝔻P a
-> 𝔻R (fun ν => K (ν 0) (fun n => ν (S n)))
-> 𝔻R (fun ν => forall x, x <= a ν -> K x ν).
Proof.
intros Ha HK.
apply dio_rel_equiv with (fun v => forall x, x < 1+a v -> K x v); auto.
intros v; split; intros H x Hx; apply H; omega.
Defined.
Hint Resolve dio_rel_fall_le.