Require Import Arith Omega Max.
From Undecidability Require Import ILL.Definitions.
From Undecidability Require Import Shared.Libs.DLW.Utils.utils H10.Dio.dio_logic H10.Dio.dio_elem.
From Undecidability Require Import H10.FRACTRAN_DIO Problems.H10C.
Set Implicit Arguments.
Section dc_list_h10c.
Reduction from (l,ν) an instance of a DIO_ELEM_PROBLEM
where
- l is a list of elementary Diophantine constraints
- ν is a valuation for the paratemeters
- a list of x=1 or x=y+z or x=y*z
Variable (ν : nat -> nat).
Let even n := 2*n+2.
Let odd n := 2*n+1.
Let h10c_nat n :=
match n with
| 0 => h10c_plus (even 0) (even 0) (even 0)
| S n => h10c_plus (even n) 0 (even (S n))
end.
Let dc_h10c (c : dio_constraint) :=
let (x,c) := c
in match c with
| dee_nat n => h10c_plus (even n) (even 0) (odd x)
| dee_var y => h10c_plus (odd y) (even 0) (odd x)
| dee_par p => h10c_plus (even (ν p)) (even 0) (odd x)
| dee_comp do_add y z => h10c_plus (odd y) (odd z) (odd x)
| dee_comp do_mul y z => h10c_mult (odd y) (odd z) (odd x)
end.
Let dee_const c :=
match c with
| dee_nat n => n::nil
| dee_par p => ν p::nil
| _ => nil
end.
Section dc_h10c_equiv.
Variable (φ Ψ : nat -> nat)
(Hpsy_0 : Ψ 0 = 1)
(Hpsy_odd : forall n, Ψ (odd n) = φ n).
Local Lemma dc_h10c_equiv c :
(forall n, In n (0::dee_const (snd c)) -> Ψ (even n) = n)
-> dc_eval φ ν c <-> h10c_sem (dc_h10c c) Ψ.
Proof.
destruct c as (x,[ n | y | p | [] y z ]); unfold dc_eval; simpl; intros H.
+ do 2 (rewrite H; auto); rewrite Hpsy_odd; omega.
+ rewrite H; auto; do 2 rewrite Hpsy_odd; omega.
+ do 2 (rewrite H; auto); rewrite Hpsy_odd; omega.
+ do 3 rewrite Hpsy_odd; omega.
+ do 3 rewrite Hpsy_odd; omega.
Qed.
End dc_h10c_equiv.
Let Fixpoint dc_max (l : list dio_constraint) :=
match l with
| nil => 0
| (_,dee_nat n)::l => max n (dc_max l)
| (_,dee_par p)::l => max (ν p) (dc_max l)
| _::l => dc_max l
end.
Let dc_list_const l := list_an 0 (1+dc_max l).
Let dc_list_const_prop c l : In c l -> incl (0::dee_const (snd c)) (dc_list_const l).
Proof.
intros Hc x [ Hx | Hx ]; apply list_an_spec.
+ subst; omega.
+ split; try omega; apply le_n_S.
revert x Hx; rewrite <- Forall_forall.
revert c Hc; rewrite <- Forall_forall.
induction l as [ | (x,c) l IHl ].
- constructor.
- constructor.
* destruct c as [ n | y | p | [] y z ]; simpl; repeat constructor; apply le_max_l.
* revert IHl; apply Forall_impl.
intros y _; apply Forall_impl.
intros z _ Hz.
apply le_trans with (1 := Hz).
simpl; clear y z Hz.
destruct c as [ n | y | p | [] y z ]; auto; apply le_max_r.
Qed.
Definition dc_list_h10c l := h10c_one 0 :: map h10c_nat (dc_list_const l)
++ map dc_h10c l.
Theorem dc_list_h10c_spec l : (exists φ, Forall (dc_eval φ ν) l)
<-> (exists Ψ, Forall (fun c => h10c_sem c Ψ) (dc_list_h10c l)).
Proof.
split.
+ intros (phi & Hphi).
set (psy n := match div2 n with
| (0 , false) => 1
| (S n, false) => n
| (n , true) => phi n
end).
assert (Hpsy_0 : psy 0 = 1) by reflexivity.
assert (Hpsy_even : forall n, psy (even n) = n).
{ intros n.
unfold even.
replace (2*n+2) with (2*(S n)) by omega.
unfold psy; rewrite div2_2p0; trivial. }
assert (Hpsy_odd : forall n, psy (odd n) = phi n).
{ intros n.
unfold odd, psy; rewrite div2_2p1; trivial; destruct n; auto. }
exists psy.
unfold dc_list_h10c; constructor; try reflexivity.
apply Forall_app; split; apply Forall_forall.
* intros c; rewrite in_map_iff.
intros (k & Hk); revert Hk.
unfold dc_list_const; rewrite list_an_spec.
intros (H1 & H2).
unfold h10c_nat in H1.
destruct k as [ | k ]; rewrite <- H1; simpl; auto.
repeat rewrite Hpsy_even.
rewrite Hpsy_0; omega.
* intros c; rewrite in_map_iff.
intros (k & H1 & H2).
rewrite <- H1, <- dc_h10c_equiv with (φ := phi); auto.
rewrite Forall_forall in Hphi; auto.
+ intros (psy & Hpsy).
simpl in Hpsy.
apply Forall_cons_inv in Hpsy.
destruct Hpsy as (H1 & H2).
apply Forall_app in H2.
destruct H2 as (H2 & H3).
rewrite Forall_forall in H2.
rewrite Forall_forall in H3.
exists (fun n => psy (odd n)).
rewrite Forall_forall.
intros c Hc.
rewrite dc_h10c_equiv with (Ψ := psy); auto.
* apply H3, in_map_iff; exists c; auto.
* assert (forall n, n <= dc_max l -> h10c_sem (h10c_nat n) psy) as H4.
{ intros n Hn; apply H2, in_map_iff; exists n; split; auto.
apply list_an_spec; omega. }
simpl in H1.
clear H2 H3.
intros n Hn.
apply dc_list_const_prop with (1 := Hc) in Hn.
apply list_an_spec in Hn.
clear Hc.
assert (n <= dc_max l) as H5 by omega.
clear Hn.
revert n H4 H5; generalize (dc_max l).
intros m n H2.
induction n as [ | n IHn ]; intros Hn; specialize (H2 _ Hn); simpl in H2.
- omega.
- rewrite IHn, H1 in H2; omega.
Qed.
End dc_list_h10c.
Section DIO_ELEM_H10C_SAT.
Let f (P : DIO_ELEM_PROBLEM) : H10C_PROBLEM :=
let (l,ν) := P in dc_list_h10c ν l.
Theorem DIO_ELEM_H10C_SAT : DIO_ELEM_SAT ⪯ H10C_SAT.
Proof.
exists f.
intros (l,ν); simpl; unfold H10C_SAT; rewrite dc_list_h10c_spec.
split; intros (phi & Hphi); exists phi; revert Hphi;
rewrite Forall_forall; auto.
Qed.
End DIO_ELEM_H10C_SAT.
Print h10c.
Print h10c_sem.
Print H10C_PROBLEM.
Print H10C_SAT.
Check DIO_ELEM_H10C_SAT.
Print Assumptions DIO_ELEM_H10C_SAT.
Check FRACTRAN_HALTING_DIO_LOGIC_SAT.
Check DIO_LOGIC_ELEM_SAT.