Require Import Arith Omega Max.

From Undecidability Require Import ILL.Definitions.

From Undecidability Require Import Shared.Libs.DLW.Utils.utils H10.Dio.dio_logic H10.Dio.dio_elem.
From Undecidability Require Import H10.FRACTRAN_DIO Problems.H10C.

Set Implicit Arguments.

Section dc_list_h10c.

Reduction from (l,ν) an instance of a DIO_ELEM_PROBLEM where
  • l is a list of elementary Diophantine constraints
  • ν is a valuation for the paratemeters
into an instance of H10C_PROBLEM, i.e.
  • a list of x=1 or x=y+z or x=y*z

  Variable (ν : nat -> nat).


  Let even n := 2*n+2.
  Let odd n := 2*n+1.

  Let h10c_nat n :=
    match n with
      | 0 => h10c_plus (even 0) (even 0) (even 0)
      | S n => h10c_plus (even n) 0 (even (S n))
    end.

  Let dc_h10c (c : dio_constraint) :=
    let (x,c) := c
    in match c with
      | dee_nat n => h10c_plus (even n) (even 0) (odd x)
      | dee_var y => h10c_plus (odd y) (even 0) (odd x)
      | dee_par p => h10c_plus (even (ν p)) (even 0) (odd x)
      | dee_comp do_add y z => h10c_plus (odd y) (odd z) (odd x)
      | dee_comp do_mul y z => h10c_mult (odd y) (odd z) (odd x)
    end.

  Let dee_const c :=
    match c with
      | dee_nat n => n::nil
      | dee_par p => ν p::nil
      | _ => nil
    end.

  Section dc_h10c_equiv.

    Variable (φ Ψ : nat -> nat)
             (Hpsy_0 : Ψ 0 = 1)
             (Hpsy_odd : forall n, Ψ (odd n) = φ n).

    Local Lemma dc_h10c_equiv c :
                (forall n, In n (0::dee_const (snd c)) -> Ψ (even n) = n)
             -> dc_eval φ ν c <-> h10c_sem (dc_h10c c) Ψ.
    Proof.
      destruct c as (x,[ n | y | p | [] y z ]); unfold dc_eval; simpl; intros H.
      + do 2 (rewrite H; auto); rewrite Hpsy_odd; omega.
      + rewrite H; auto; do 2 rewrite Hpsy_odd; omega.
      + do 2 (rewrite H; auto); rewrite Hpsy_odd; omega.
      + do 3 rewrite Hpsy_odd; omega.
      + do 3 rewrite Hpsy_odd; omega.
    Qed.

  End dc_h10c_equiv.

  Let Fixpoint dc_max (l : list dio_constraint) :=
    match l with
      | nil => 0
      | (_,dee_nat n)::l => max n (dc_max l)
      | (_,dee_par p)::l => max (ν p) (dc_max l)
      | _::l => dc_max l
    end.

  Let dc_list_const l := list_an 0 (1+dc_max l).

  Let dc_list_const_prop c l : In c l -> incl (0::dee_const (snd c)) (dc_list_const l).
  Proof.
    intros Hc x [ Hx | Hx ]; apply list_an_spec.
    + subst; omega.
    + split; try omega; apply le_n_S.
      revert x Hx; rewrite <- Forall_forall.
      revert c Hc; rewrite <- Forall_forall.
      induction l as [ | (x,c) l IHl ].
      - constructor.
      - constructor.
        * destruct c as [ n | y | p | [] y z ]; simpl; repeat constructor; apply le_max_l.
        * revert IHl; apply Forall_impl.
          intros y _; apply Forall_impl.
          intros z _ Hz.
          apply le_trans with (1 := Hz).
          simpl; clear y z Hz.
          destruct c as [ n | y | p | [] y z ]; auto; apply le_max_r.
  Qed.

  Definition dc_list_h10c l := h10c_one 0 :: map h10c_nat (dc_list_const l)
                                          ++ map dc_h10c l.

  Theorem dc_list_h10c_spec l : (exists φ, Forall (dc_eval φ ν) l)
                            <-> (exists Ψ, Forall (fun c => h10c_sem c Ψ) (dc_list_h10c l)).
  Proof.
    split.
    + intros (phi & Hphi).
      set (psy n := match div2 n with
                      | (0 , false) => 1
                      | (S n, false) => n
                      | (n , true) => phi n
                    end).
      assert (Hpsy_0 : psy 0 = 1) by reflexivity.
      assert (Hpsy_even : forall n, psy (even n) = n).
      { intros n.
        unfold even.
        replace (2*n+2) with (2*(S n)) by omega.
        unfold psy; rewrite div2_2p0; trivial. }
      assert (Hpsy_odd : forall n, psy (odd n) = phi n).
      { intros n.
        unfold odd, psy; rewrite div2_2p1; trivial; destruct n; auto. }
      exists psy.
      unfold dc_list_h10c; constructor; try reflexivity.
      apply Forall_app; split; apply Forall_forall.
      * intros c; rewrite in_map_iff.
        intros (k & Hk); revert Hk.
        unfold dc_list_const; rewrite list_an_spec.
        intros (H1 & H2).
        unfold h10c_nat in H1.
        destruct k as [ | k ]; rewrite <- H1; simpl; auto.
        repeat rewrite Hpsy_even.
        rewrite Hpsy_0; omega.
      * intros c; rewrite in_map_iff.
        intros (k & H1 & H2).
        rewrite <- H1, <- dc_h10c_equiv with (φ := phi); auto.
        rewrite Forall_forall in Hphi; auto.
    + intros (psy & Hpsy).
      simpl in Hpsy.
      apply Forall_cons_inv in Hpsy.
      destruct Hpsy as (H1 & H2).
      apply Forall_app in H2.
      destruct H2 as (H2 & H3).
      rewrite Forall_forall in H2.
      rewrite Forall_forall in H3.
      exists (fun n => psy (odd n)).
      rewrite Forall_forall.
      intros c Hc.
      rewrite dc_h10c_equiv with (Ψ := psy); auto.
      * apply H3, in_map_iff; exists c; auto.
      * assert (forall n, n <= dc_max l -> h10c_sem (h10c_nat n) psy) as H4.
        { intros n Hn; apply H2, in_map_iff; exists n; split; auto.
          apply list_an_spec; omega. }
        simpl in H1.
        clear H2 H3.
        intros n Hn.
        apply dc_list_const_prop with (1 := Hc) in Hn.
        apply list_an_spec in Hn.
        clear Hc.
        assert (n <= dc_max l) as H5 by omega.
        clear Hn.
        revert n H4 H5; generalize (dc_max l).
        intros m n H2.
        induction n as [ | n IHn ]; intros Hn; specialize (H2 _ Hn); simpl in H2.
        - omega.
        - rewrite IHn, H1 in H2; omega.
  Qed.

End dc_list_h10c.

Section DIO_ELEM_H10C_SAT.

  Let f (P : DIO_ELEM_PROBLEM) : H10C_PROBLEM :=
     let (l,ν) := P in dc_list_h10c ν l.

  Theorem DIO_ELEM_H10C_SAT : DIO_ELEM_SAT H10C_SAT.
  Proof.
    exists f.
    intros (l,ν); simpl; unfold H10C_SAT; rewrite dc_list_h10c_spec.
    split; intros (phi & Hphi); exists phi; revert Hphi;
      rewrite Forall_forall; auto.
  Qed.

End DIO_ELEM_H10C_SAT.

Print h10c.
Print h10c_sem.
Print H10C_PROBLEM.
Print H10C_SAT.

Check DIO_ELEM_H10C_SAT.
Print Assumptions DIO_ELEM_H10C_SAT.

Check FRACTRAN_HALTING_DIO_LOGIC_SAT.
Check DIO_LOGIC_ELEM_SAT.