The purpose of this operator is to deactivate TM_Correct.
Variable (sig : finType) (n : nat).
Variable (F : finType).
Variable (pM : pTM sig F n).
Definition Id := pM.
End Id.
Variable (F : finType).
Variable (pM : pTM sig F n).
Definition Id := pM.
End Id.
Simple operator to change the labelling function
Section Relabel.
Variable (sig : finType) (n : nat).
Variable F F' : finType.
Variable pM : { M : mTM sig n & states M -> F }.
Variable p : F -> F'.
Definition Relabel : pTM sig F' n :=
(projT1 pM; fun q => p (projT2 pM q)).
Lemma Relabel_Realise R :
pM ⊨ R ->
Relabel ⊨ ⋃_y (R |_ y) ||_(p y).
Proof.
intros HRel.
intros tin k outc HLoop.
hnf in HRel. specialize HRel with (1 := HLoop).
hnf. exists (projT2 pM (cstate outc)). hnf. cbn. auto.
Qed.
Lemma Relabel_RealiseIn R k :
pM ⊨c(k) R ->
Relabel ⊨c(k) ⋃_y (R |_ y) ||_(p y).
Proof. firstorder. Qed.
Lemma Relabel_Terminates T :
projT1 pM ↓ T ->
projT1 Relabel ↓ T.
Proof. firstorder. Qed.
End Relabel.
Arguments Relabel : simpl never.
Variable (sig : finType) (n : nat).
Variable F F' : finType.
Variable pM : { M : mTM sig n & states M -> F }.
Variable p : F -> F'.
Definition Relabel : pTM sig F' n :=
(projT1 pM; fun q => p (projT2 pM q)).
Lemma Relabel_Realise R :
pM ⊨ R ->
Relabel ⊨ ⋃_y (R |_ y) ||_(p y).
Proof.
intros HRel.
intros tin k outc HLoop.
hnf in HRel. specialize HRel with (1 := HLoop).
hnf. exists (projT2 pM (cstate outc)). hnf. cbn. auto.
Qed.
Lemma Relabel_RealiseIn R k :
pM ⊨c(k) R ->
Relabel ⊨c(k) ⋃_y (R |_ y) ||_(p y).
Proof. firstorder. Qed.
Lemma Relabel_Terminates T :
projT1 pM ↓ T ->
projT1 Relabel ↓ T.
Proof. firstorder. Qed.
End Relabel.
Arguments Relabel : simpl never.
Special case of the above operator, where we just fix a label
Section Return.
Variable (sig : finType) (n : nat).
Variable F : finType.
Variable pM : { M : mTM sig n & states M -> F }.
Variable F' : finType.
Variable p : F'.
Definition Return := Relabel pM (fun _ => p).
Lemma Return_Realise R :
pM ⊨ R ->
Return ⊨ (⋃_f (R |_ f)) ||_ p.
Proof. intros. intros tin k outc HLoop. hnf. split; hnf; eauto. exists (projT2 pM (cstate outc)). hnf. eauto. Qed.
Lemma Return_RealiseIn R k :
pM ⊨c(k) R ->
Return ⊨c(k) (⋃_f (R |_ f)) ||_ p.
Proof. firstorder. Qed.
Lemma Return_Terminates T :
projT1 pM ↓ T ->
projT1 Return ↓ T.
Proof. firstorder. Qed.
End Return.
Arguments Return : simpl never.
Variable (sig : finType) (n : nat).
Variable F : finType.
Variable pM : { M : mTM sig n & states M -> F }.
Variable F' : finType.
Variable p : F'.
Definition Return := Relabel pM (fun _ => p).
Lemma Return_Realise R :
pM ⊨ R ->
Return ⊨ (⋃_f (R |_ f)) ||_ p.
Proof. intros. intros tin k outc HLoop. hnf. split; hnf; eauto. exists (projT2 pM (cstate outc)). hnf. eauto. Qed.
Lemma Return_RealiseIn R k :
pM ⊨c(k) R ->
Return ⊨c(k) (⋃_f (R |_ f)) ||_ p.
Proof. firstorder. Qed.
Lemma Return_Terminates T :
projT1 pM ↓ T ->
projT1 Return ↓ T.
Proof. firstorder. Qed.
End Return.
Arguments Return : simpl never.
Tactic Support
Export Set Warnings "-unused-intro-pattern".
Local Tactic Notation "idtac'" uconstr(a) string(b) := idtac.
Ltac destruct_shelve e :=
cbn in e;
let x1 := fresh "x" in
let x2 := fresh "x" in
let x3 := fresh "x" in
let x4 := fresh "x" in
let x5 := fresh "x" in
let x6 := fresh "x" in
let x7 := fresh "x" in
let x8 := fresh "x" in
let x9 := fresh "x" in
first [ destruct e as [x1|x2|x3|x4|x5|x6|x7|x8|x9]; idtac' e "has 9 constructors"; [ try destruct_shelve x1 | try destruct_shelve x2 | try destruct_shelve x3 | try destruct_shelve x4 | try destruct_shelve x5 | try destruct_shelve x6 | try destruct_shelve x7 | try destruct_shelve x8 | try destruct_shelve x9]; shelve
| destruct e as [x1|x2|x3|x4|x5|x6|x7|x8]; idtac' e "has 8 constructors"; [ try destruct_shelve x1 | try destruct_shelve x2 | try destruct_shelve x3 | try destruct_shelve x4 | try destruct_shelve x5 | try destruct_shelve x6 | try destruct_shelve x7 | try destruct_shelve x8]; shelve
| destruct e as [x1|x2|x3|x4|x5|x6|x7]; idtac' e "has 7 constructors"; [ try destruct_shelve x1 | try destruct_shelve x2 | try destruct_shelve x3 | try destruct_shelve x4 | try destruct_shelve x5 | try destruct_shelve x6 | try destruct_shelve x7]; shelve
| destruct e as [x1|x2|x3|x4|x5|x6]; idtac' e "has 6 constructors"; [ try destruct_shelve x1 | try destruct_shelve x2 | try destruct_shelve x3 | try destruct_shelve x4 | try destruct_shelve x5 | try destruct_shelve x6]; shelve
| destruct e as [x1|x2|x3|x4|x5]; idtac' e "has 5 constructors"; [ try destruct_shelve x1 | try destruct_shelve x2 | try destruct_shelve x3 | try destruct_shelve x4 | try destruct_shelve x5]; shelve
| destruct e as [x1|x2|x3|x4]; idtac' e "has 4 constructors"; [ try destruct_shelve x1 | try destruct_shelve x2 | try destruct_shelve x3 | try destruct_shelve x4]; shelve
| destruct e as [x1|x2|x3]; idtac' e "has 3 constructors"; [ try destruct_shelve x1 | try destruct_shelve x2 | try destruct_shelve x3]; shelve
| destruct e as [x1|x2]; idtac' e "has 2 constructors"; [ try destruct_shelve x1 | try destruct_shelve x2]; shelve
| destruct e as [x1]; idtac' e "has 1 constructors"; [ try destruct_shelve x1 ]; shelve
| destruct e as []; idtac' e "has 0 constructors"; shelve
]
.
Ltac smpl_match_case_solve_RealiseIn :=
eapply RealiseIn_monotone'; [ | shelve].
Local Tactic Notation "idtac'" uconstr(a) string(b) := idtac.
Ltac destruct_shelve e :=
cbn in e;
let x1 := fresh "x" in
let x2 := fresh "x" in
let x3 := fresh "x" in
let x4 := fresh "x" in
let x5 := fresh "x" in
let x6 := fresh "x" in
let x7 := fresh "x" in
let x8 := fresh "x" in
let x9 := fresh "x" in
first [ destruct e as [x1|x2|x3|x4|x5|x6|x7|x8|x9]; idtac' e "has 9 constructors"; [ try destruct_shelve x1 | try destruct_shelve x2 | try destruct_shelve x3 | try destruct_shelve x4 | try destruct_shelve x5 | try destruct_shelve x6 | try destruct_shelve x7 | try destruct_shelve x8 | try destruct_shelve x9]; shelve
| destruct e as [x1|x2|x3|x4|x5|x6|x7|x8]; idtac' e "has 8 constructors"; [ try destruct_shelve x1 | try destruct_shelve x2 | try destruct_shelve x3 | try destruct_shelve x4 | try destruct_shelve x5 | try destruct_shelve x6 | try destruct_shelve x7 | try destruct_shelve x8]; shelve
| destruct e as [x1|x2|x3|x4|x5|x6|x7]; idtac' e "has 7 constructors"; [ try destruct_shelve x1 | try destruct_shelve x2 | try destruct_shelve x3 | try destruct_shelve x4 | try destruct_shelve x5 | try destruct_shelve x6 | try destruct_shelve x7]; shelve
| destruct e as [x1|x2|x3|x4|x5|x6]; idtac' e "has 6 constructors"; [ try destruct_shelve x1 | try destruct_shelve x2 | try destruct_shelve x3 | try destruct_shelve x4 | try destruct_shelve x5 | try destruct_shelve x6]; shelve
| destruct e as [x1|x2|x3|x4|x5]; idtac' e "has 5 constructors"; [ try destruct_shelve x1 | try destruct_shelve x2 | try destruct_shelve x3 | try destruct_shelve x4 | try destruct_shelve x5]; shelve
| destruct e as [x1|x2|x3|x4]; idtac' e "has 4 constructors"; [ try destruct_shelve x1 | try destruct_shelve x2 | try destruct_shelve x3 | try destruct_shelve x4]; shelve
| destruct e as [x1|x2|x3]; idtac' e "has 3 constructors"; [ try destruct_shelve x1 | try destruct_shelve x2 | try destruct_shelve x3]; shelve
| destruct e as [x1|x2]; idtac' e "has 2 constructors"; [ try destruct_shelve x1 | try destruct_shelve x2]; shelve
| destruct e as [x1]; idtac' e "has 1 constructors"; [ try destruct_shelve x1 ]; shelve
| destruct e as []; idtac' e "has 0 constructors"; shelve
]
.
Ltac smpl_match_case_solve_RealiseIn :=
eapply RealiseIn_monotone'; [ | shelve].
This disables the automatic exploration of all possible branvhes in a switch machine.
It is useful if some branches do perform the same work to nos split the proof unless required.
See CaseBool for an example. Usage with the tactical destructBoth allows to refine the relation when performing caseSplits
Definition TM_Correct_noSwitchAuto := unit.
Opaque TM_Correct_noSwitchAuto.
Ltac TM_Correct_noSwitchAuto := let f := fresh "flag" in assert (f := (tt:TM_Correct_noSwitchAuto)).
Ltac smpl_match_RealiseIn :=
lazymatch goal with
| H : TM_Correct_noSwitchAuto |- _ => eapply Switch_RealiseIn with (R2:= fun x => _ );[TM_Correct| ]
| [ |- Switch ?M1 ?M2 ⊨c(?k1) ?R] =>
is_evar R;
let tM2 := type of M2 in
let x := fresh "x" in
match tM2 with
| ?F -> _ =>
eapply (Switch_RealiseIn
(F := FinType(EqType F))
(R2 := ltac:(now ( intros x; destruct_shelve x))));
[
smpl_match_case_solve_RealiseIn
| intros x; repeat destruct _; smpl_match_case_solve_RealiseIn
]
end
end
.
Ltac smpl_match_Realise :=
lazymatch goal with
| H : TM_Correct_noSwitchAuto |- _ => eapply Switch_Realise with (R2:= fun x => _ );[TM_Correct| ]
| [ |- Switch ?M1 ?M2 ⊨ ?R] =>
is_evar R;
let tM2 := type of M2 in
let x := fresh "x" in
match tM2 with
| ?F -> _ =>
eapply (Switch_Realise
(F := FinType(EqType F))
(R2 := ltac:(now (intros x; destruct_shelve x))));
[
| intros x; repeat destruct _
]
end
end.
Ltac smpl_match_Terminates :=
lazymatch goal with
| H : TM_Correct_noSwitchAuto |- _ => eapply Switch_TerminatesIn with (T2:= fun x => _ );[TM_Correct|TM_Correct | ]
| [ |- projT1 (Switch ?M1 ?M2) ↓ ?R] =>
is_evar R;
let tM2 := type of M2 in
let x := fresh "x" in
match tM2 with
| ?F -> _ =>
eapply (Switch_TerminatesIn
(F := FinType(EqType F))
(T2 := ltac:(now (intros x; destruct_shelve x))));
[
|
| intros x; repeat destruct _
]
end
end.
Ltac smpl_TM_Combinators :=
lazymatch goal with
| [ |- Switch _ _ ⊨ _] => smpl_match_Realise
| [ |- Switch _ _ ⊨c(_) _] => smpl_match_RealiseIn
| [ |- projT1 (Switch _ _) ↓ _] => smpl_match_Terminates
| [ |- If _ _ _ ⊨ _] => eapply If_Realise
| [ |- If _ _ _ ⊨c(_) _] => eapply If_RealiseIn
| [ |- projT1 (If _ _ _) ↓ _] => eapply If_TerminatesIn
| [ |- Seq _ _ ⊨ _] => eapply Seq_Realise
| [ |- Seq _ _ ⊨c(_) _] => eapply Seq_RealiseIn
| [ |- projT1 (Seq _ _) ↓ _] => eapply Seq_TerminatesIn
| [ |- While _ ⊨ _] => eapply While_Realise
| [ |- projT1 (While _) ↓ _] => eapply While_TerminatesIn
| [ |- StateWhile _ _ ⊨ _] => eapply StateWhile_Realise
| [ |- projT1 (StateWhile _ _) ↓ _] => eapply StateWhile_TerminatesIn
| [ |- Relabel _ _ ⊨ _] => eapply Relabel_Realise
| [ |- Relabel _ _ ⊨c(_) _] => eapply Relabel_RealiseIn
| [ |- projT1 (Relabel _ _) ↓ _] => eapply Relabel_Terminates
| [ |- Return _ _ ⊨ _] => eapply Return_Realise
| [ |- Return _ _ ⊨c(_) _] => eapply Return_RealiseIn
| [ |- projT1 (Return _ _) ↓ _] => eapply Return_Terminates
end.
Smpl Add smpl_TM_Combinators : TM_Correct.
Opaque TM_Correct_noSwitchAuto.
Ltac TM_Correct_noSwitchAuto := let f := fresh "flag" in assert (f := (tt:TM_Correct_noSwitchAuto)).
Ltac smpl_match_RealiseIn :=
lazymatch goal with
| H : TM_Correct_noSwitchAuto |- _ => eapply Switch_RealiseIn with (R2:= fun x => _ );[TM_Correct| ]
| [ |- Switch ?M1 ?M2 ⊨c(?k1) ?R] =>
is_evar R;
let tM2 := type of M2 in
let x := fresh "x" in
match tM2 with
| ?F -> _ =>
eapply (Switch_RealiseIn
(F := FinType(EqType F))
(R2 := ltac:(now ( intros x; destruct_shelve x))));
[
smpl_match_case_solve_RealiseIn
| intros x; repeat destruct _; smpl_match_case_solve_RealiseIn
]
end
end
.
Ltac smpl_match_Realise :=
lazymatch goal with
| H : TM_Correct_noSwitchAuto |- _ => eapply Switch_Realise with (R2:= fun x => _ );[TM_Correct| ]
| [ |- Switch ?M1 ?M2 ⊨ ?R] =>
is_evar R;
let tM2 := type of M2 in
let x := fresh "x" in
match tM2 with
| ?F -> _ =>
eapply (Switch_Realise
(F := FinType(EqType F))
(R2 := ltac:(now (intros x; destruct_shelve x))));
[
| intros x; repeat destruct _
]
end
end.
Ltac smpl_match_Terminates :=
lazymatch goal with
| H : TM_Correct_noSwitchAuto |- _ => eapply Switch_TerminatesIn with (T2:= fun x => _ );[TM_Correct|TM_Correct | ]
| [ |- projT1 (Switch ?M1 ?M2) ↓ ?R] =>
is_evar R;
let tM2 := type of M2 in
let x := fresh "x" in
match tM2 with
| ?F -> _ =>
eapply (Switch_TerminatesIn
(F := FinType(EqType F))
(T2 := ltac:(now (intros x; destruct_shelve x))));
[
|
| intros x; repeat destruct _
]
end
end.
Ltac smpl_TM_Combinators :=
lazymatch goal with
| [ |- Switch _ _ ⊨ _] => smpl_match_Realise
| [ |- Switch _ _ ⊨c(_) _] => smpl_match_RealiseIn
| [ |- projT1 (Switch _ _) ↓ _] => smpl_match_Terminates
| [ |- If _ _ _ ⊨ _] => eapply If_Realise
| [ |- If _ _ _ ⊨c(_) _] => eapply If_RealiseIn
| [ |- projT1 (If _ _ _) ↓ _] => eapply If_TerminatesIn
| [ |- Seq _ _ ⊨ _] => eapply Seq_Realise
| [ |- Seq _ _ ⊨c(_) _] => eapply Seq_RealiseIn
| [ |- projT1 (Seq _ _) ↓ _] => eapply Seq_TerminatesIn
| [ |- While _ ⊨ _] => eapply While_Realise
| [ |- projT1 (While _) ↓ _] => eapply While_TerminatesIn
| [ |- StateWhile _ _ ⊨ _] => eapply StateWhile_Realise
| [ |- projT1 (StateWhile _ _) ↓ _] => eapply StateWhile_TerminatesIn
| [ |- Relabel _ _ ⊨ _] => eapply Relabel_Realise
| [ |- Relabel _ _ ⊨c(_) _] => eapply Relabel_RealiseIn
| [ |- projT1 (Relabel _ _) ↓ _] => eapply Relabel_Terminates
| [ |- Return _ _ ⊨ _] => eapply Return_Realise
| [ |- Return _ _ ⊨c(_) _] => eapply Return_RealiseIn
| [ |- projT1 (Return _ _) ↓ _] => eapply Return_Terminates
end.
Smpl Add smpl_TM_Combinators : TM_Correct.