(**************************************************************)
(* Copyright Dominique Larchey-Wendling * *)
(* *)
(* * Affiliation LORIA -- CNRS *)
(**************************************************************)
(* This file is distributed under the terms of the *)
(* CeCILL v2 FREE SOFTWARE LICENSE AGREEMENT *)
(**************************************************************)
(* Copyright Dominique Larchey-Wendling * *)
(* *)
(* * Affiliation LORIA -- CNRS *)
(**************************************************************)
(* This file is distributed under the terms of the *)
(* CeCILL v2 FREE SOFTWARE LICENSE AGREEMENT *)
(**************************************************************)
(* Require Import dio_expr dio_logic dio_elem dio_poly. *)
Require Import List Arith Omega.
Require Import utils_tac utils_list sums rel_iter pos vec.
Require Import fractran_defs prime_seq.
Require Import dio_logic dio_bounded dio_rt_closure dio_single.
Set Implicit Arguments.
Section fractran_dio.
Notation "l /F/ x → y" := (fractran_step l x y) (at level 70, no associativity).
(* Fractran step is a diophantine relation *)
Lemma dio_rel_fractran_step l x y : 𝔻P x -> 𝔻P y -> 𝔻R (fun ν => l /F/ x ν → y ν).
Proof.
intros Hx Hy.
induction l as [ | (p,q) l IHl ].
+ apply dio_rel_equiv with (fun _ => False); auto.
intros v; rewrite fractran_step_nil_inv; split; tauto.
+ apply dio_rel_equiv with (1 := fun v => fractran_step_cons_inv p q l (x v) (y v)); auto.
Defined.
Hint Resolve dio_rel_fractran_step.
(* Hence Fractan step* (refl. trans. closure) is diophantine *)
Theorem dio_rel_fractran_rt l x y :
𝔻P x -> 𝔻P y -> 𝔻R (fun ν => fractran_compute l (x ν) (y ν)).
Proof.
intros; apply dio_rel_exst, dio_rel_rel_iter; auto.
Defined.
(* Fractran stop is a diophantine relation *)
Theorem dio_rel_fractran_stop l x : 𝔻P x -> 𝔻R (fun ν => fractran_stop l (x ν)).
Proof.
intros Hx.
induction l as [ | (p,q) l IHl ].
+ apply dio_rel_equiv with (fun _ => True); auto.
intro v; split; auto; intros _ ?.
rewrite fractran_step_nil_inv; auto.
+ apply dio_rel_equiv with (1 := fun v => fractan_stop_cons_inv p q l (x v)); auto.
Defined.
Hint Resolve dio_rel_fractran_rt dio_rel_fractran_stop.
(* We start with the case of regular Fractran programs that do not
contain (_,0) "fractions" *)
(* Hence Halting from the value x is diophantine *)
Theorem FRACTRAN_HALTING_on_diophantine ll x :
𝔻P x -> 𝔻R (fun ν => FRACTRAN_HALTING (ll,x ν)).
Proof.
intros; apply dio_rel_exst, dio_rel_conj; auto.
Defined.
Theorem FRACTRAN_HALTING_diophantine_0 ll : 𝔻R (fun ν => FRACTRAN_HALTING (ll,ν 0)).
Proof.
intros; apply FRACTRAN_HALTING_on_diophantine; auto.
Defined.
Theorem FRACTRAN_HALTING_diophantine l x : 𝔻R (fun _ => FRACTRAN_HALTING (l,x)).
Proof. apply FRACTRAN_HALTING_on_diophantine; auto. Defined.
End fractran_dio.
Local Notation power := (mscal mult 1).
Fact power_expo x y : power x y = y^x.
Proof.
induction x as [ | x IHx ]; simpl.
+ rewrite power_0; auto.
+ rewrite power_S; f_equal; auto.
Qed.
Theorem FRACTRAN_HALTING_dio_single l x : { e : dio_single nat Empty_set | l /F/ x ↓ <-> dio_single_pred e (fun _ => 0) }.
Proof.
generalize (@FRACTRAN_HALTING_on_diophantine l (fun _ => x)); intros H1.
spec in H1; auto.
destruct dio_rel_single with (1 := H1) as ((p,q) & He).
unfold FRACTRAN_HALTING in He.
exists (dp_inst_par (fun _ => 0) p, dp_inst_par (fun _ => 0) q).
rewrite He with (ν := fun _ => 0).
unfold dio_single_pred; simpl.
split; intros (phi & Hphi); exists phi; revert Hphi;
repeat rewrite dp_inst_par_eval; auto.
Qed.
Section exp_diophantine.
(* for fixed n i j, the function v => exp i <v(j),...,v(n-1+j)> has a diophantine representation *)
Let exp_dio n i j y : 𝔻P y -> 𝔻R (fun v => y v = exp i (fun2vec j n v)).
Proof.
revert j i y; induction n as [ | n IHn ]; intros j i y Hy.
+ simpl; dio_rel_auto.
+ assert (H : forall v, y v = exp i (fun2vec j (S n) v)
<-> exists q1 q2, y v = q1*q2
/\ q1 = power (v j) (qs i)
/\ q2 = exp (S i) (fun2vec (S j) n v)).
{ intros v; simpl fun2vec; rewrite exp_cons; split.
* exists (qs i^v j), (exp (S i) (fun2vec (S j) n v));
rewrite power_expo; auto.
* intros (q1 & q2 & H & ? & ?); subst.
rewrite H, power_expo; auto. }
apply dio_rel_equiv with (1 := H); clear H.
do 2 apply dio_rel_exst.
apply dio_rel_conj; auto.
apply dio_rel_conj; auto.
assert (H : dio_rel (fun v => v 0 = exp (S i) (fun2vec (3+j) n v))).
{ apply IHn; auto. }
revert H; apply dio_rel_equiv.
intros v; rewrite fun2vec_lift with (f := fun i => v (S i)).
rewrite fun2vec_lift; simpl; tauto.
Qed.
(* for a fixed n, the relation
ν 0 = ps 1 * (qs 1)^(ν 1) * ... * (qs n)^(ν n)
has a diophantine representation *)
Hint Resolve exp_dio.
Fact exp_diophantine n : 𝔻R (fun ν => ν 0 = ps 1 * exp 1 (fun2vec 0 n (fun x => ν (S x)))).
Proof.
apply dio_rel_equiv with (fun v => exists y, v 0 = ps 1 * y
/\ y = exp 1 (fun2vec 0 n (fun x => v (S x)))).
+ intro v; split.
* exists (exp 1 (fun2vec 0 n (fun x => v (S x)))); auto.
* intros (y & H1 & <-); auto.
+ apply dio_rel_exst, dio_rel_conj; auto.
apply dio_rel_equiv with (fun v => v 0 = exp 1 (fun2vec 2 n v)); auto.
intro; repeat rewrite <- fun2vec_lift; tauto.
Qed.
End exp_diophantine.
Hint Resolve exp_diophantine.
Theorem FRACTRAN_HALTING_on_exp_diophantine n l :
𝔻R (fun ν => l /F/ ps 1 * exp 1 (fun2vec 0 n ν) ↓).
Proof.
apply dio_rel_compose with (R := fun x v => l /F/ x ↓); auto.
apply FRACTRAN_HALTING_on_diophantine; auto.
Qed.
Check FRACTRAN_HALTING_on_exp_diophantine.
Print Assumptions FRACTRAN_HALTING_on_exp_diophantine.