From Undecidability.L.Complexity Require Import NP Synthetic Problems.SAT Problems.Clique.
From Undecidability.L Require Import Tactics.LTactics.
From Undecidability.L.Complexity Require Import Problems.kSAT PolyBounds NP Synthetic.
From Undecidability.L.Datatypes Require Import LBool LLNat LLists LProd.
Lemma kSAT_to_SAT (k : nat): reducesPolyMO (unrestrictedP (kSAT k)) (unrestrictedP SAT).
Proof.
destruct k.
{
apply reducesPolyMO_intro with (f := fun N => [[(true, 0)]; [(false, 0)]]).
- exists (fun n => 13).
+ extract. solverec.
+ smpl_inO.
+ smpl_inO.
+ exists (fun n => size (enc [[(true, 0)]; [(false, 0)]])); [solverec | smpl_inO | smpl_inO].
- intros N ?. cbn. exists Logic.I. unfold kSAT.
split; [lia | ]. intros [a H].
unfold satisfies, evalCnf in H; cbn in H.
destruct evalVar; cbn in H; congruence.
}
apply reducesPolyMO_intro_unrestricted with (f := fun N => if kCNF_decb (S k) N then N else [[(true, 0)]; [(false, 0)]]) .
- evar (f : nat -> nat). exists f.
+ extract. solverec.
all: rewrite kCNF_decb_time_bound.
instantiate (f := fun n => poly__kCNFDecb (n + size (enc (S k))) + 18).
all: subst f; solverec.
+ subst f; smpl_inO. apply inOPoly_comp; smpl_inO; apply kCNF_decb_poly.
+ subst f; smpl_inO. apply kCNF_decb_poly.
+ evar (g : nat -> nat). exists g.
* intros N. destruct kCNF_decb.
instantiate (g := fun n => n + size (enc [[(true, 0)]; [(false, 0)]])).
all: subst g; solverec.
* subst g; smpl_inO.
* subst g; smpl_inO.
- intros N. split.
+ intros [H1 [H2 H3]].
apply kCNF_decb_iff in H2. rewrite H2. apply H3.
+ destruct kCNF_decb eqn:H1.
* apply kCNF_decb_iff in H1. intros H2. split; [lia | split; easy].
* intros [a H]. unfold satisfies, evalCnf in H; cbn in H.
destruct evalVar; cbn in H; congruence.
Qed.
Lemma inNP_kSAT (k : nat) : inNP (unrestrictedP (kSAT k)).
Proof.
eapply red_inNP with (Q := unrestrictedP SAT).
- apply kSAT_to_SAT.
- apply sat_NP.
Qed.
From Undecidability.L Require Import Tactics.LTactics.
From Undecidability.L.Complexity Require Import Problems.kSAT PolyBounds NP Synthetic.
From Undecidability.L.Datatypes Require Import LBool LLNat LLists LProd.
Lemma kSAT_to_SAT (k : nat): reducesPolyMO (unrestrictedP (kSAT k)) (unrestrictedP SAT).
Proof.
destruct k.
{
apply reducesPolyMO_intro with (f := fun N => [[(true, 0)]; [(false, 0)]]).
- exists (fun n => 13).
+ extract. solverec.
+ smpl_inO.
+ smpl_inO.
+ exists (fun n => size (enc [[(true, 0)]; [(false, 0)]])); [solverec | smpl_inO | smpl_inO].
- intros N ?. cbn. exists Logic.I. unfold kSAT.
split; [lia | ]. intros [a H].
unfold satisfies, evalCnf in H; cbn in H.
destruct evalVar; cbn in H; congruence.
}
apply reducesPolyMO_intro_unrestricted with (f := fun N => if kCNF_decb (S k) N then N else [[(true, 0)]; [(false, 0)]]) .
- evar (f : nat -> nat). exists f.
+ extract. solverec.
all: rewrite kCNF_decb_time_bound.
instantiate (f := fun n => poly__kCNFDecb (n + size (enc (S k))) + 18).
all: subst f; solverec.
+ subst f; smpl_inO. apply inOPoly_comp; smpl_inO; apply kCNF_decb_poly.
+ subst f; smpl_inO. apply kCNF_decb_poly.
+ evar (g : nat -> nat). exists g.
* intros N. destruct kCNF_decb.
instantiate (g := fun n => n + size (enc [[(true, 0)]; [(false, 0)]])).
all: subst g; solverec.
* subst g; smpl_inO.
* subst g; smpl_inO.
- intros N. split.
+ intros [H1 [H2 H3]].
apply kCNF_decb_iff in H2. rewrite H2. apply H3.
+ destruct kCNF_decb eqn:H1.
* apply kCNF_decb_iff in H1. intros H2. split; [lia | split; easy].
* intros [a H]. unfold satisfies, evalCnf in H; cbn in H.
destruct evalVar; cbn in H; congruence.
Qed.
Lemma inNP_kSAT (k : nat) : inNP (unrestrictedP (kSAT k)).
Proof.
eapply red_inNP with (Q := unrestrictedP SAT).
- apply kSAT_to_SAT.
- apply sat_NP.
Qed.