From Undecidability Require Import ProgrammingTools.
From Undecidability Require Import TM.Code.CaseNat TM.Code.CaseSum TM.Code.CaseFin LM_heap_def .
From Undecidability.LAM Require Import TM.Alphabets.
Definition CaseCom : pTM sigCom^+ (option ACom) 1 :=
If (CaseSum _ _)
(Return Nop None)
(Relabel (ChangeAlphabet (CaseFin (FinType(EqType(ACom))) ) _) Some).
Definition CaseCom_size (t : Tok) : nat -> nat :=
match t with
| varT n => S
| _ => S >> S >> S
end.
Definition CaseCom_Rel : pRel sigCom^+ (FinType (EqType (option ACom))) 1 :=
fun tin '(yout, tout) =>
forall (t : Tok) (s : nat),
tin[@Fin0] ≃(;s) t ->
match yout, t with
| Some appAT, appT => isRight_size tout[@Fin0] (CaseCom_size t s)
| Some lamAT, lamT => isRight_size tout[@Fin0] (CaseCom_size t s)
| Some retAT, retT => isRight_size tout[@Fin0] (CaseCom_size t s)
| None, varT n => tout[@Fin0] ≃(;CaseCom_size t s) n
| _, _ => False
end
.
Definition CaseCom_steps := 11.
Lemma CaseCom_Sem : CaseCom ⊨c(CaseCom_steps) CaseCom_Rel.
Proof.
unfold CaseCom_steps. eapply RealiseIn_monotone.
{ unfold CaseCom. TM_Correct. }
{ cbn. reflexivity. }
{
intros tin (yout, tout) H. intros t s HEncT. TMSimp.
unfold sigCom in *.
destruct H; TMSimp.
{
specialize (H t s HEncT).
destruct t; auto.
}
{
rename H into HCaseSum.
simpl_tape in *; cbn in *.
specialize (HCaseSum t s HEncT).
destruct t; cbn in *; eauto; modpon H1; subst; eauto.
}
}
Qed.
Constructors
Use WriteValue for appT, lamT, and retT
Definition Constr_ACom (t : ACom) : pTM sigCom^+ unit 1 := WriteValue (encode (ACom2Com t)).
Definition Constr_ACom_Rel (t : ACom) : pRel sigCom^+ unit 1 :=
Mk_R_p (ignoreParam (fun tin tout => isRight tin -> tout ≃ ACom2Com t)).
Definition Constr_ACom_steps := 7.
Lemma Constr_ACom_Sem t : Constr_ACom t ⊨c(Constr_ACom_steps)Constr_ACom_Rel t.
Proof.
unfold Constr_ACom_steps. eapply RealiseIn_monotone.
- unfold Constr_ACom. apply WriteValue_Sem.
- cbn. destruct t; cbn; reflexivity.
- intros tin ((), tout) H. cbn in *. intros HRight.
specialize H with (x := t) (1 := eq_refl). modpon H. contains_ext.
Qed.
Definition Constr_varT : pTM sigCom^+ unit 1 := Constr_inl _ _.
Definition Constr_varT_Rel : pRel sigCom^+ (FinType (EqType unit)) 1 :=
Mk_R_p (ignoreParam (fun tin tout => forall (x : nat) (s : nat), tin ≃(;s) x -> tout ≃(;pred s) varT x)).
Definition Constr_varT_steps := 3.
Lemma Constr_varT_Sem : Constr_varT ⊨c(Constr_varT_steps) Constr_varT_Rel.
Proof.
unfold Constr_varT_steps. eapply RealiseIn_monotone.
- unfold Constr_varT. apply Constr_inl_Sem.
- reflexivity.
- intros tin ((), tout) H. intros n s HEncN. TMSimp. modpon H. auto.
Qed.
Arguments CaseCom : simpl never.
Arguments Constr_ACom : simpl never.
Arguments Constr_varT : simpl never.