From Undecidability Require Import ProgrammingTools Code.
Section CaseBool.
Local Notation sig := bool.
Definition CaseBool : pTM bool^+ bool 1 :=
Move R;;
Switch (ReadChar)
(fun s => match s with
| Some (inr x) => Return (Move R) x
| _ => Return (Nop) default
end).
Definition CaseBool_Rel : pRel bool^+ bool 1 :=
fun tin '(yout, tout) => forall (x : sig) (s : nat), tin[@Fin0] ≃(;s) x -> isRight_size tout[@Fin0] (S(S(s))) /\ yout = x.
Definition CaseBool_steps := 5.
Lemma CaseBool_Sem : CaseBool ⊨c(CaseBool_steps) CaseBool_Rel.
Proof.
TM_Correct_noSwitchAuto.
unfold CaseBool_steps. eapply RealiseIn_monotone.
{ unfold CaseBool. TM_Correct. intros b.
destructBoth b as [ [] | ].
all:eapply RealiseIn_monotone';[TM_Correct | ]. 2:reflexivity. all:Lia.nia. }
{ Lia.nia. }
{
intros tin (yout, tout) H. intros x s HEncX.
destruct HEncX as (ls&HEncX&Hs).
TMSimp. split. 2:auto. hnf. do 2 eexists. split;[f_equal| ]. cbn;omega.
}
Qed.
There is no need for a constructor, just use WriteValue
End CaseBool.
Arguments CaseBool : simpl never.
Ltac smpl_TM_CaseBool :=
lazymatch goal with
| [ |- CaseBool ⊨ _ ] => eapply RealiseIn_Realise; apply CaseBool_Sem
| [ |- CaseBool ⊨c(_) _ ] => apply CaseBool_Sem
| [ |- projT1 CaseBool ↓ _ ] => eapply RealiseIn_TerminatesIn; apply CaseBool_Sem
end.
Smpl Add smpl_TM_CaseBool : TM_Correct.