From Undecidability Require Import ProgrammingTools.
From Undecidability Require Import CaseNat ListTM PrettyBounds.BaseCode.
From Undecidability.L.Complexity Require Import UpToCNary.
Local Arguments skipn { A } !n !l.
Local Arguments plus : simpl never.
Local Arguments mult : simpl never.
Local Arguments Encode_list : simpl never.
Local Arguments Encode_nat : simpl never.
Section bla.
Import FinTypes.
Polymorphic Lemma leUpToC_clean domain (f F: Rtuple domain -> nat):
Fun' f <=c Fun' F
-> f <=c F.
Proof.
prove_nary id.
Qed.
End bla.
Module ConcatRepeat.
Section concatRepeat.
Variable sig sigX : finType.
Variable (X : Type) (cX : codable sigX X).
Variable (retr1 : Retract (sigList sigX) sig) (retr2 : Retract sigNat sig).
Definition Rel__step : pRel sig^+ (option unit) 3 :=
fun tin '(yout,tout) =>
forall (cs : list X) (n:nat) ( xs : list X) ,
tin[@Fin0] ≃ cs ->
tin[@Fin1] ≃ n ->
tin[@Fin2] ≃ xs ->
match yout, n with
| (Some tt), 0 =>
tout[@Fin0] ≃ cs /\
isRight tout[@Fin1] /\
tout[@Fin2] ≃ xs
| None, S n =>
tout[@Fin0] ≃ cs /\
tout[@Fin1] ≃ n /\
tout[@Fin2] ≃ cs++xs
| _, _ => False
end.
Definition M__step : pTM sig^+ (option unit) 3 :=
If (LiftTapes (ChangeAlphabet CaseNat _) [|Fin1|])
(Return (LiftTapes (ChangeAlphabet (App' _) _) [|Fin0; Fin2|]) None)
(Return (LiftTapes (Reset _) [|Fin1|]) (Some tt)).
Lemma Realises__step : M__step ⊨ Rel__step .
Proof.
eapply Realise_monotone.
{unfold M__step. TM_Correct. now apply App'_Realise. now apply Reset_Realise. }
intros t (y,t') H. cbn.
intros cs n xs Hcs Hn Hxs. cbn in H.
destruct H as [H|H].
-destruct H as (?&(HCase&HCaseRem)&->&tt1&HApp&HAppRem). clear tt1.
modpon HCase. destruct n. easy. TMSimp. modpon HApp.
repeat eapply conj. 1-3:now contains_ext.
-destruct H as (?&(HCase&HCaseRem)&->&tt1&HReset&HResetRem). clear tt1.
modpon HCase. destruct n. 2:easy. TMSimp. modpon HReset.
repeat eapply conj. 1,3:now contains_ext. now isRight_mono.
Qed.
Definition Rel : pRel sig^+ unit 3 :=
ignoreParam (
fun tin tout =>
forall (cs : list X) (n:nat) ( xs : list X) ,
tin[@Fin0] ≃ cs ->
tin[@Fin1] ≃ n ->
tin[@Fin2] ≃ xs ->
tout[@Fin0] ≃ cs /\
isRight tout[@Fin1] /\
tout[@Fin2] ≃ concat (repeat cs n)++xs
).
Definition M : pTM sig^+ unit 3 := While M__step.
Lemma Realises : M ⊨ Rel .
Proof.
eapply Realise_monotone.
{unfold M. TM_Correct. apply Realises__step. }
eapply WhileInduction;intros;hnf;intros cs n xs Hcs Hn Hxs.
-hnf in HLastStep. modpon HLastStep. destruct yout,n. 2:easy.
TMSimp. easy.
-hnf in HStar. modpon HStar. destruct n. easy. TMSimp.
modpon HLastStep. replace (cs ++ concat (repeat cs n)) with (concat (repeat cs (n+1))).
+rewrite repeat_add_app, concat_app;cbn;autorewrite with list;cbn. easy.
+rewrite Nat.add_comm. reflexivity.
Qed.
Program Definition time__step {X : Type} (cs : list X) (n:nat) : nat :=
_.
Definition Ter__step time : tRel sig^+ 3 :=
fun tin k => exists (cs : list X) (n:nat) ( xs : list X) ,
tin[@Fin0] ≃ cs /\ tin[@Fin1] ≃ n /\ tin[@Fin2] ≃ xs /\ time (n,size cs) <= k.
Lemma _Terminates__step : { time : UpToC (fun '(n,l) => (if n =? 0 then 0 else l) + 1)
& projT1 M__step ↓ Ter__step time}.
Proof.
eexists_UpToC time. [time]:refine (fun '(n,l) => if n =? 0 then _ else _).
eapply TerminatesIn_monotone.
{ unfold M__step. TM_Correct. now apply App'_Terminates with (cX:=cX). now apply Reset_Terminates with (X := nat) (I := retr2). }
{
intros tin k (cs&n&xs&Hcs&Hn&Hxs&Hk). cbn. eexists. eexists (if n =? 0 then _ else _).
infTer 3. rewrite <- Hk.
2:{ clear Hk time.
intros tout b (HCaseNat&HRem). modpon HCaseNat.
destruct b. all:destruct (Nat.eqb_spec n 0) as [Hn0|Hn0]. all:try now (destruct n;exfalso).
2:{rewrite Hn0 in HCaseNat. exists 0. split. 2:reflexivity. simpl_surject. TMSimp. contains_ext. }
unfold App'_T;cbn. eexists cs, xs. TMSimp. split. 2:split. 3:reflexivity.
all:simpl_surject. all:contains_ext.
}
unfold CaseNat_steps,Reset_steps.
assert (HApp:=proj2_sig (App'_steps_nice cX) cs). hnf in HApp. unfold time.
destruct Nat.eqb. reflexivity. rewrite HApp.
set (size cs) as l. reflexivity.
}
unfold time.
apply leUpToC_finCases with
(cases := fun (b:bool) => match b return (if b then nat*nat else nat) -> _ with
false => fun l => (0,l)
| true => fun '(n,l) => (S n, l)
end).
{ intros [[ |n] l]. now (exists false; eauto). now (exists true;eexists (_,_);eauto). }
intros []. nary apply leUpToC_clean.
2:{ cbn [fst snd]. rewrite Nat.eqb_refl. smpl_upToC_solve. }
cbn [Nat.eqb]. smpl_upToC_solve.
Qed.
Definition Terminates__step := projT2 _Terminates__step.
Definition Ter time : tRel sig^+ 3 :=
fun tin k => exists (cs : list X) (n:nat) ( xs : list X) ,
tin[@Fin0] ≃ cs /\ tin[@Fin1] ≃ n /\ tin[@Fin2] ≃ xs /\ time (size cs,n) <= k.
Lemma _Terminates : {time : UpToC (fun '(l,n) => n * l + 1)
& projT1 M ↓ Ter time }.
Proof.
evar (c1 : nat). evar (c2 : nat).
exists_UpToC (fun '(l,n) => n * l * c1 + c2). unfold M.
eapply TerminatesIn_monotone.
-TM_Correct. now apply Realises__step. now apply Terminates__step.
-apply WhileCoInduction. unfold Ter.
intros tin k (cs&n&xs&Hcs&Hn&Hxs&Hk).
eexists. unfold Ter__step. split.
{ exists cs,n,xs. repeat simple apply conj. 1-3:eassumption. rewrite UpToC_le. reflexivity. }
unfold Rel__step. intros ymid tmid Hstep. modpon Hstep.
destruct ymid as [[]| ],n. all:try now exfalso.
+rewrite Nat.eqb_refl. rewrite <- Hk, Nat.mul_0_l, Nat.mul_1_r,!Nat.add_0_l. unfold c2. reflexivity.
+TMSimp.
eexists. split.
*repeat simple eapply ex_intro. repeat simple apply conj. 1-3:contains_ext. reflexivity.
* rewrite <- Hk. ring_simplify. set (c' := c__leUpToC).
assert (size cs > 0). 1:{rewrite Encode_list_hasSize. destruct cs;cbn;nia. }
replace c1 with (2 + 2*c'). 2:now unfold c',c1. nia.
- smpl_upToC_solve.
Qed.
Definition Terminates := projT2 _Terminates.
End concatRepeat.
End ConcatRepeat.
From Undecidability Require Import CaseNat ListTM PrettyBounds.BaseCode.
From Undecidability.L.Complexity Require Import UpToCNary.
Local Arguments skipn { A } !n !l.
Local Arguments plus : simpl never.
Local Arguments mult : simpl never.
Local Arguments Encode_list : simpl never.
Local Arguments Encode_nat : simpl never.
Section bla.
Import FinTypes.
Polymorphic Lemma leUpToC_clean domain (f F: Rtuple domain -> nat):
Fun' f <=c Fun' F
-> f <=c F.
Proof.
prove_nary id.
Qed.
End bla.
Module ConcatRepeat.
Section concatRepeat.
Variable sig sigX : finType.
Variable (X : Type) (cX : codable sigX X).
Variable (retr1 : Retract (sigList sigX) sig) (retr2 : Retract sigNat sig).
Definition Rel__step : pRel sig^+ (option unit) 3 :=
fun tin '(yout,tout) =>
forall (cs : list X) (n:nat) ( xs : list X) ,
tin[@Fin0] ≃ cs ->
tin[@Fin1] ≃ n ->
tin[@Fin2] ≃ xs ->
match yout, n with
| (Some tt), 0 =>
tout[@Fin0] ≃ cs /\
isRight tout[@Fin1] /\
tout[@Fin2] ≃ xs
| None, S n =>
tout[@Fin0] ≃ cs /\
tout[@Fin1] ≃ n /\
tout[@Fin2] ≃ cs++xs
| _, _ => False
end.
Definition M__step : pTM sig^+ (option unit) 3 :=
If (LiftTapes (ChangeAlphabet CaseNat _) [|Fin1|])
(Return (LiftTapes (ChangeAlphabet (App' _) _) [|Fin0; Fin2|]) None)
(Return (LiftTapes (Reset _) [|Fin1|]) (Some tt)).
Lemma Realises__step : M__step ⊨ Rel__step .
Proof.
eapply Realise_monotone.
{unfold M__step. TM_Correct. now apply App'_Realise. now apply Reset_Realise. }
intros t (y,t') H. cbn.
intros cs n xs Hcs Hn Hxs. cbn in H.
destruct H as [H|H].
-destruct H as (?&(HCase&HCaseRem)&->&tt1&HApp&HAppRem). clear tt1.
modpon HCase. destruct n. easy. TMSimp. modpon HApp.
repeat eapply conj. 1-3:now contains_ext.
-destruct H as (?&(HCase&HCaseRem)&->&tt1&HReset&HResetRem). clear tt1.
modpon HCase. destruct n. 2:easy. TMSimp. modpon HReset.
repeat eapply conj. 1,3:now contains_ext. now isRight_mono.
Qed.
Definition Rel : pRel sig^+ unit 3 :=
ignoreParam (
fun tin tout =>
forall (cs : list X) (n:nat) ( xs : list X) ,
tin[@Fin0] ≃ cs ->
tin[@Fin1] ≃ n ->
tin[@Fin2] ≃ xs ->
tout[@Fin0] ≃ cs /\
isRight tout[@Fin1] /\
tout[@Fin2] ≃ concat (repeat cs n)++xs
).
Definition M : pTM sig^+ unit 3 := While M__step.
Lemma Realises : M ⊨ Rel .
Proof.
eapply Realise_monotone.
{unfold M. TM_Correct. apply Realises__step. }
eapply WhileInduction;intros;hnf;intros cs n xs Hcs Hn Hxs.
-hnf in HLastStep. modpon HLastStep. destruct yout,n. 2:easy.
TMSimp. easy.
-hnf in HStar. modpon HStar. destruct n. easy. TMSimp.
modpon HLastStep. replace (cs ++ concat (repeat cs n)) with (concat (repeat cs (n+1))).
+rewrite repeat_add_app, concat_app;cbn;autorewrite with list;cbn. easy.
+rewrite Nat.add_comm. reflexivity.
Qed.
Program Definition time__step {X : Type} (cs : list X) (n:nat) : nat :=
_.
Definition Ter__step time : tRel sig^+ 3 :=
fun tin k => exists (cs : list X) (n:nat) ( xs : list X) ,
tin[@Fin0] ≃ cs /\ tin[@Fin1] ≃ n /\ tin[@Fin2] ≃ xs /\ time (n,size cs) <= k.
Lemma _Terminates__step : { time : UpToC (fun '(n,l) => (if n =? 0 then 0 else l) + 1)
& projT1 M__step ↓ Ter__step time}.
Proof.
eexists_UpToC time. [time]:refine (fun '(n,l) => if n =? 0 then _ else _).
eapply TerminatesIn_monotone.
{ unfold M__step. TM_Correct. now apply App'_Terminates with (cX:=cX). now apply Reset_Terminates with (X := nat) (I := retr2). }
{
intros tin k (cs&n&xs&Hcs&Hn&Hxs&Hk). cbn. eexists. eexists (if n =? 0 then _ else _).
infTer 3. rewrite <- Hk.
2:{ clear Hk time.
intros tout b (HCaseNat&HRem). modpon HCaseNat.
destruct b. all:destruct (Nat.eqb_spec n 0) as [Hn0|Hn0]. all:try now (destruct n;exfalso).
2:{rewrite Hn0 in HCaseNat. exists 0. split. 2:reflexivity. simpl_surject. TMSimp. contains_ext. }
unfold App'_T;cbn. eexists cs, xs. TMSimp. split. 2:split. 3:reflexivity.
all:simpl_surject. all:contains_ext.
}
unfold CaseNat_steps,Reset_steps.
assert (HApp:=proj2_sig (App'_steps_nice cX) cs). hnf in HApp. unfold time.
destruct Nat.eqb. reflexivity. rewrite HApp.
set (size cs) as l. reflexivity.
}
unfold time.
apply leUpToC_finCases with
(cases := fun (b:bool) => match b return (if b then nat*nat else nat) -> _ with
false => fun l => (0,l)
| true => fun '(n,l) => (S n, l)
end).
{ intros [[ |n] l]. now (exists false; eauto). now (exists true;eexists (_,_);eauto). }
intros []. nary apply leUpToC_clean.
2:{ cbn [fst snd]. rewrite Nat.eqb_refl. smpl_upToC_solve. }
cbn [Nat.eqb]. smpl_upToC_solve.
Qed.
Definition Terminates__step := projT2 _Terminates__step.
Definition Ter time : tRel sig^+ 3 :=
fun tin k => exists (cs : list X) (n:nat) ( xs : list X) ,
tin[@Fin0] ≃ cs /\ tin[@Fin1] ≃ n /\ tin[@Fin2] ≃ xs /\ time (size cs,n) <= k.
Lemma _Terminates : {time : UpToC (fun '(l,n) => n * l + 1)
& projT1 M ↓ Ter time }.
Proof.
evar (c1 : nat). evar (c2 : nat).
exists_UpToC (fun '(l,n) => n * l * c1 + c2). unfold M.
eapply TerminatesIn_monotone.
-TM_Correct. now apply Realises__step. now apply Terminates__step.
-apply WhileCoInduction. unfold Ter.
intros tin k (cs&n&xs&Hcs&Hn&Hxs&Hk).
eexists. unfold Ter__step. split.
{ exists cs,n,xs. repeat simple apply conj. 1-3:eassumption. rewrite UpToC_le. reflexivity. }
unfold Rel__step. intros ymid tmid Hstep. modpon Hstep.
destruct ymid as [[]| ],n. all:try now exfalso.
+rewrite Nat.eqb_refl. rewrite <- Hk, Nat.mul_0_l, Nat.mul_1_r,!Nat.add_0_l. unfold c2. reflexivity.
+TMSimp.
eexists. split.
*repeat simple eapply ex_intro. repeat simple apply conj. 1-3:contains_ext. reflexivity.
* rewrite <- Hk. ring_simplify. set (c' := c__leUpToC).
assert (size cs > 0). 1:{rewrite Encode_list_hasSize. destruct cs;cbn;nia. }
replace c1 with (2 + 2*c'). 2:now unfold c',c1. nia.
- smpl_upToC_solve.
Qed.
Definition Terminates := projT2 _Terminates.
End concatRepeat.
End ConcatRepeat.